L(s) = 1 | + (0.382 − 0.923i)3-s + (0.504 + 0.209i)5-s + (2.34 − 0.970i)7-s + (−0.707 − 0.707i)9-s + (1.94 + 4.68i)11-s − 2.53i·13-s + (0.386 − 0.386i)15-s + (1.13 − 3.96i)17-s + (1.03 − 1.03i)19-s − 2.53i·21-s + (−0.313 − 0.756i)23-s + (−3.32 − 3.32i)25-s + (−0.923 + 0.382i)27-s + (7.59 + 3.14i)29-s + (−1.98 + 4.78i)31-s + ⋯ |
L(s) = 1 | + (0.220 − 0.533i)3-s + (0.225 + 0.0935i)5-s + (0.885 − 0.366i)7-s + (−0.235 − 0.235i)9-s + (0.585 + 1.41i)11-s − 0.701i·13-s + (0.0997 − 0.0997i)15-s + (0.275 − 0.961i)17-s + (0.236 − 0.236i)19-s − 0.553i·21-s + (−0.0653 − 0.157i)23-s + (−0.664 − 0.664i)25-s + (−0.177 + 0.0736i)27-s + (1.40 + 0.583i)29-s + (−0.356 + 0.860i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 + 0.560i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 + 0.560i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61191 - 0.494590i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61191 - 0.494590i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.382 + 0.923i)T \) |
| 17 | \( 1 + (-1.13 + 3.96i)T \) |
good | 5 | \( 1 + (-0.504 - 0.209i)T + (3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (-2.34 + 0.970i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.94 - 4.68i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 2.53iT - 13T^{2} \) |
| 19 | \( 1 + (-1.03 + 1.03i)T - 19iT^{2} \) |
| 23 | \( 1 + (0.313 + 0.756i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-7.59 - 3.14i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (1.98 - 4.78i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-3.31 + 7.99i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (4.17 - 1.72i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (1.55 + 1.55i)T + 43iT^{2} \) |
| 47 | \( 1 - 4.86iT - 47T^{2} \) |
| 53 | \( 1 + (4.85 - 4.85i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.24 + 2.24i)T + 59iT^{2} \) |
| 61 | \( 1 + (1.20 - 0.499i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 8.60T + 67T^{2} \) |
| 71 | \( 1 + (4.49 - 10.8i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (10.8 + 4.49i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (-5.33 - 12.8i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (8.06 - 8.06i)T - 83iT^{2} \) |
| 89 | \( 1 - 6.97iT - 89T^{2} \) |
| 97 | \( 1 + (17.9 + 7.42i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22155367311665998196406395947, −10.20566356842039546792248607272, −9.378279085432235497290092188822, −8.242343178618825527710364218349, −7.42098576092720900254318183876, −6.67655825589712174843148714150, −5.28496771550577776440444091096, −4.31624319161032436048753764445, −2.70841805580405019798952780282, −1.37047026824774404494423953420,
1.66982574259377548604599095102, 3.30433444334661212253457064974, 4.39846721619229819637838508079, 5.56257265696416946861006529133, 6.39780560877118236190575192729, 7.995678050089038469040620433195, 8.542635842539752727043698718146, 9.462546760264792207243883086796, 10.40853915990372855942527013711, 11.48808742128101204235693761732