L(s) = 1 | + (0.795 − 0.948i)2-s + (0.0810 + 0.459i)4-s + (−2.17 − 0.523i)5-s + (2.24 + 0.395i)7-s + (2.64 + 1.52i)8-s + (−2.22 + 1.64i)10-s + (4.87 − 1.77i)11-s + (0.993 + 1.18i)13-s + (2.15 − 1.81i)14-s + (2.67 − 0.974i)16-s + (−4.61 + 2.66i)17-s + (2.28 − 3.96i)19-s + (0.0645 − 1.04i)20-s + (2.19 − 6.03i)22-s + (5.06 − 0.892i)23-s + ⋯ |
L(s) = 1 | + (0.562 − 0.670i)2-s + (0.0405 + 0.229i)4-s + (−0.972 − 0.234i)5-s + (0.847 + 0.149i)7-s + (0.935 + 0.539i)8-s + (−0.704 + 0.520i)10-s + (1.46 − 0.534i)11-s + (0.275 + 0.328i)13-s + (0.577 − 0.484i)14-s + (0.669 − 0.243i)16-s + (−1.11 + 0.646i)17-s + (0.524 − 0.909i)19-s + (0.0144 − 0.232i)20-s + (0.468 − 1.28i)22-s + (1.05 − 0.186i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.889 + 0.456i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.889 + 0.456i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.85954 - 0.448680i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.85954 - 0.448680i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.17 + 0.523i)T \) |
good | 2 | \( 1 + (-0.795 + 0.948i)T + (-0.347 - 1.96i)T^{2} \) |
| 7 | \( 1 + (-2.24 - 0.395i)T + (6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (-4.87 + 1.77i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (-0.993 - 1.18i)T + (-2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (4.61 - 2.66i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.28 + 3.96i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.06 + 0.892i)T + (21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (4.94 + 4.15i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (0.228 + 1.29i)T + (-29.1 + 10.6i)T^{2} \) |
| 37 | \( 1 + (3.18 - 1.84i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.26 - 2.74i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (-2.88 - 7.92i)T + (-32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (6.68 + 1.17i)T + (44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 - 6.64iT - 53T^{2} \) |
| 59 | \( 1 + (2.83 + 1.03i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.999 + 5.67i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (2.22 + 2.65i)T + (-11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-0.0130 - 0.0226i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (5.00 + 2.89i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (12.6 + 10.6i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (-6.96 + 8.29i)T + (-14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (2.32 - 4.02i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.48 + 6.81i)T + (-74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42751367575906845321137165395, −10.92538915040195023683736959900, −9.147076062819484920807854270636, −8.506928693985844606882551239718, −7.55561681328008551196127320865, −6.49693398665003767867301290700, −4.83391754424733547405934526044, −4.19253811771006865580349971953, −3.19033999413554727324900952350, −1.54974121309177985273257021792,
1.46302168100154330549879882733, 3.65922168068465639392056197953, 4.51380240695798746253389988723, 5.45281147752881404984115302103, 6.88126538860476972854461209074, 7.17928459426766132018068712954, 8.385454620197026859288350679888, 9.404589898805344936279018900558, 10.67785799314659684442626045875, 11.32473900554740515916474727907