Properties

Label 405.2.p.a.289.11
Level $405$
Weight $2$
Character 405.289
Analytic conductor $3.234$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(19,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.p (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 289.11
Character \(\chi\) \(=\) 405.289
Dual form 405.2.p.a.199.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.795984 - 0.948617i) q^{2} +(0.0810128 + 0.459446i) q^{4} +(-2.17384 - 0.523837i) q^{5} +(2.24130 + 0.395202i) q^{7} +(2.64518 + 1.52719i) q^{8} +(-2.22727 + 1.64518i) q^{10} +(4.87230 - 1.77337i) q^{11} +(0.993836 + 1.18441i) q^{13} +(2.15894 - 1.81156i) q^{14} +(2.67745 - 0.974511i) q^{16} +(-4.61649 + 2.66533i) q^{17} +(2.28767 - 3.96236i) q^{19} +(0.0645661 - 1.04120i) q^{20} +(2.19602 - 6.03353i) q^{22} +(5.06318 - 0.892775i) q^{23} +(4.45119 + 2.27748i) q^{25} +1.91463 q^{26} +1.06177i q^{28} +(-4.94693 - 4.15097i) q^{29} +(-0.228069 - 1.29344i) q^{31} +(-0.882557 + 2.42480i) q^{32} +(-1.14627 + 6.50084i) q^{34} +(-4.66522 - 2.03319i) q^{35} +(-3.18754 + 1.84032i) q^{37} +(-1.93781 - 5.32410i) q^{38} +(-4.95020 - 4.70552i) q^{40} +(-3.26644 + 2.74087i) q^{41} +(2.88612 + 7.92956i) q^{43} +(1.20949 + 2.09490i) q^{44} +(3.18331 - 5.51365i) q^{46} +(-6.68721 - 1.17913i) q^{47} +(-1.71059 - 0.622605i) q^{49} +(5.70353 - 2.40964i) q^{50} +(-0.463658 + 0.552567i) q^{52} +6.64507i q^{53} +(-11.5206 + 1.30274i) q^{55} +(5.32509 + 4.46828i) q^{56} +(-7.87536 + 1.38864i) q^{58} +(-2.83430 - 1.03160i) q^{59} +(0.999796 - 5.67013i) q^{61} +(-1.40852 - 0.813210i) q^{62} +(4.44699 + 7.70241i) q^{64} +(-1.54001 - 3.09533i) q^{65} +(-2.22595 - 2.65278i) q^{67} +(-1.59857 - 1.90510i) q^{68} +(-5.64216 + 2.80712i) q^{70} +(0.0130487 + 0.0226011i) q^{71} +(-5.00704 - 2.89081i) q^{73} +(-0.791465 + 4.48862i) q^{74} +(2.00582 + 0.730059i) q^{76} +(11.6211 - 2.04912i) q^{77} +(-12.6845 - 10.6435i) q^{79} +(-6.33083 + 0.715887i) q^{80} +5.28029i q^{82} +(6.96279 - 8.29793i) q^{83} +(11.4317 - 3.37572i) q^{85} +(9.81943 + 3.57398i) q^{86} +(15.5964 + 2.75006i) q^{88} +(-2.32308 + 4.02369i) q^{89} +(1.75941 + 3.04738i) q^{91} +(0.820364 + 2.25393i) q^{92} +(-6.44146 + 5.40503i) q^{94} +(-7.04866 + 7.41518i) q^{95} +(-2.48117 - 6.81695i) q^{97} +(-1.95222 + 1.12712i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 12 q^{4} + 9 q^{5} - 3 q^{10} + 6 q^{11} + 18 q^{14} - 24 q^{16} - 6 q^{19} + 57 q^{20} + 3 q^{25} - 48 q^{26} + 30 q^{29} - 30 q^{31} - 24 q^{34} + 12 q^{35} - 9 q^{40} + 12 q^{41} - 78 q^{44} - 6 q^{46}+ \cdots - 87 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.795984 0.948617i 0.562846 0.670774i −0.407300 0.913294i \(-0.633530\pi\)
0.970146 + 0.242521i \(0.0779742\pi\)
\(3\) 0 0
\(4\) 0.0810128 + 0.459446i 0.0405064 + 0.229723i
\(5\) −2.17384 0.523837i −0.972172 0.234267i
\(6\) 0 0
\(7\) 2.24130 + 0.395202i 0.847133 + 0.149372i 0.580333 0.814379i \(-0.302923\pi\)
0.266800 + 0.963752i \(0.414034\pi\)
\(8\) 2.64518 + 1.52719i 0.935211 + 0.539945i
\(9\) 0 0
\(10\) −2.22727 + 1.64518i −0.704324 + 0.520251i
\(11\) 4.87230 1.77337i 1.46905 0.534692i 0.521211 0.853428i \(-0.325480\pi\)
0.947844 + 0.318736i \(0.103258\pi\)
\(12\) 0 0
\(13\) 0.993836 + 1.18441i 0.275641 + 0.328496i 0.886049 0.463591i \(-0.153439\pi\)
−0.610409 + 0.792087i \(0.708995\pi\)
\(14\) 2.15894 1.81156i 0.577000 0.484161i
\(15\) 0 0
\(16\) 2.67745 0.974511i 0.669361 0.243628i
\(17\) −4.61649 + 2.66533i −1.11966 + 0.646438i −0.941315 0.337530i \(-0.890409\pi\)
−0.178348 + 0.983967i \(0.557075\pi\)
\(18\) 0 0
\(19\) 2.28767 3.96236i 0.524827 0.909027i −0.474755 0.880118i \(-0.657463\pi\)
0.999582 0.0289093i \(-0.00920339\pi\)
\(20\) 0.0645661 1.04120i 0.0144374 0.232820i
\(21\) 0 0
\(22\) 2.19602 6.03353i 0.468194 1.28635i
\(23\) 5.06318 0.892775i 1.05575 0.186156i 0.381278 0.924461i \(-0.375484\pi\)
0.674468 + 0.738304i \(0.264373\pi\)
\(24\) 0 0
\(25\) 4.45119 + 2.27748i 0.890238 + 0.455496i
\(26\) 1.91463 0.375490
\(27\) 0 0
\(28\) 1.06177i 0.200657i
\(29\) −4.94693 4.15097i −0.918622 0.770816i 0.0551173 0.998480i \(-0.482447\pi\)
−0.973740 + 0.227664i \(0.926891\pi\)
\(30\) 0 0
\(31\) −0.228069 1.29344i −0.0409624 0.232309i 0.957453 0.288591i \(-0.0931867\pi\)
−0.998415 + 0.0562816i \(0.982076\pi\)
\(32\) −0.882557 + 2.42480i −0.156015 + 0.428649i
\(33\) 0 0
\(34\) −1.14627 + 6.50084i −0.196584 + 1.11489i
\(35\) −4.66522 2.03319i −0.788566 0.343671i
\(36\) 0 0
\(37\) −3.18754 + 1.84032i −0.524028 + 0.302548i −0.738581 0.674165i \(-0.764504\pi\)
0.214553 + 0.976712i \(0.431170\pi\)
\(38\) −1.93781 5.32410i −0.314355 0.863683i
\(39\) 0 0
\(40\) −4.95020 4.70552i −0.782695 0.744009i
\(41\) −3.26644 + 2.74087i −0.510132 + 0.428052i −0.861176 0.508307i \(-0.830271\pi\)
0.351044 + 0.936359i \(0.385827\pi\)
\(42\) 0 0
\(43\) 2.88612 + 7.92956i 0.440130 + 1.20925i 0.939407 + 0.342804i \(0.111377\pi\)
−0.499277 + 0.866442i \(0.666401\pi\)
\(44\) 1.20949 + 2.09490i 0.182337 + 0.315817i
\(45\) 0 0
\(46\) 3.18331 5.51365i 0.469353 0.812944i
\(47\) −6.68721 1.17913i −0.975429 0.171995i −0.336857 0.941556i \(-0.609364\pi\)
−0.638573 + 0.769561i \(0.720475\pi\)
\(48\) 0 0
\(49\) −1.71059 0.622605i −0.244371 0.0889436i
\(50\) 5.70353 2.40964i 0.806602 0.340774i
\(51\) 0 0
\(52\) −0.463658 + 0.552567i −0.0642979 + 0.0766272i
\(53\) 6.64507i 0.912771i 0.889782 + 0.456385i \(0.150856\pi\)
−0.889782 + 0.456385i \(0.849144\pi\)
\(54\) 0 0
\(55\) −11.5206 + 1.30274i −1.55343 + 0.175662i
\(56\) 5.32509 + 4.46828i 0.711596 + 0.597100i
\(57\) 0 0
\(58\) −7.87536 + 1.38864i −1.03409 + 0.182337i
\(59\) −2.83430 1.03160i −0.368995 0.134303i 0.150866 0.988554i \(-0.451794\pi\)
−0.519861 + 0.854251i \(0.674016\pi\)
\(60\) 0 0
\(61\) 0.999796 5.67013i 0.128011 0.725985i −0.851463 0.524414i \(-0.824284\pi\)
0.979474 0.201571i \(-0.0646046\pi\)
\(62\) −1.40852 0.813210i −0.178882 0.103278i
\(63\) 0 0
\(64\) 4.44699 + 7.70241i 0.555874 + 0.962801i
\(65\) −1.54001 3.09533i −0.191014 0.383928i
\(66\) 0 0
\(67\) −2.22595 2.65278i −0.271943 0.324089i 0.612738 0.790286i \(-0.290068\pi\)
−0.884681 + 0.466197i \(0.845624\pi\)
\(68\) −1.59857 1.90510i −0.193855 0.231028i
\(69\) 0 0
\(70\) −5.64216 + 2.80712i −0.674367 + 0.335515i
\(71\) 0.0130487 + 0.0226011i 0.00154860 + 0.00268225i 0.866799 0.498658i \(-0.166174\pi\)
−0.865250 + 0.501341i \(0.832840\pi\)
\(72\) 0 0
\(73\) −5.00704 2.89081i −0.586029 0.338344i 0.177497 0.984121i \(-0.443200\pi\)
−0.763526 + 0.645777i \(0.776533\pi\)
\(74\) −0.791465 + 4.48862i −0.0920059 + 0.521792i
\(75\) 0 0
\(76\) 2.00582 + 0.730059i 0.230083 + 0.0837435i
\(77\) 11.6211 2.04912i 1.32435 0.233519i
\(78\) 0 0
\(79\) −12.6845 10.6435i −1.42712 1.19749i −0.947393 0.320073i \(-0.896292\pi\)
−0.479724 0.877420i \(-0.659263\pi\)
\(80\) −6.33083 + 0.715887i −0.707809 + 0.0800386i
\(81\) 0 0
\(82\) 5.28029i 0.583110i
\(83\) 6.96279 8.29793i 0.764265 0.910816i −0.233844 0.972274i \(-0.575131\pi\)
0.998110 + 0.0614583i \(0.0195751\pi\)
\(84\) 0 0
\(85\) 11.4317 3.37572i 1.23994 0.366149i
\(86\) 9.81943 + 3.57398i 1.05886 + 0.385392i
\(87\) 0 0
\(88\) 15.5964 + 2.75006i 1.66258 + 0.293158i
\(89\) −2.32308 + 4.02369i −0.246246 + 0.426510i −0.962481 0.271349i \(-0.912530\pi\)
0.716235 + 0.697859i \(0.245864\pi\)
\(90\) 0 0
\(91\) 1.75941 + 3.04738i 0.184436 + 0.319453i
\(92\) 0.820364 + 2.25393i 0.0855289 + 0.234989i
\(93\) 0 0
\(94\) −6.44146 + 5.40503i −0.664386 + 0.557486i
\(95\) −7.04866 + 7.41518i −0.723178 + 0.760781i
\(96\) 0 0
\(97\) −2.48117 6.81695i −0.251924 0.692157i −0.999605 0.0280982i \(-0.991055\pi\)
0.747681 0.664058i \(-0.231167\pi\)
\(98\) −1.95222 + 1.12712i −0.197204 + 0.113856i
\(99\) 0 0
\(100\) −0.685777 + 2.22959i −0.0685777 + 0.222959i
\(101\) −0.0757615 + 0.429665i −0.00753855 + 0.0427532i −0.988345 0.152231i \(-0.951354\pi\)
0.980806 + 0.194984i \(0.0624655\pi\)
\(102\) 0 0
\(103\) 0.775652 2.13109i 0.0764273 0.209982i −0.895595 0.444870i \(-0.853250\pi\)
0.972023 + 0.234888i \(0.0754722\pi\)
\(104\) 0.820053 + 4.65075i 0.0804128 + 0.456044i
\(105\) 0 0
\(106\) 6.30363 + 5.28937i 0.612263 + 0.513749i
\(107\) 4.36720i 0.422193i 0.977465 + 0.211097i \(0.0677034\pi\)
−0.977465 + 0.211097i \(0.932297\pi\)
\(108\) 0 0
\(109\) −7.95224 −0.761686 −0.380843 0.924640i \(-0.624366\pi\)
−0.380843 + 0.924640i \(0.624366\pi\)
\(110\) −7.93440 + 11.9656i −0.756515 + 1.14087i
\(111\) 0 0
\(112\) 6.38610 1.12604i 0.603429 0.106401i
\(113\) −5.38234 + 14.7879i −0.506328 + 1.39112i 0.378671 + 0.925531i \(0.376381\pi\)
−0.884999 + 0.465593i \(0.845841\pi\)
\(114\) 0 0
\(115\) −11.4742 0.711529i −1.06998 0.0663504i
\(116\) 1.50638 2.60913i 0.139864 0.242252i
\(117\) 0 0
\(118\) −3.23466 + 1.86753i −0.297774 + 0.171920i
\(119\) −11.4003 + 4.14937i −1.04506 + 0.380372i
\(120\) 0 0
\(121\) 12.1680 10.2102i 1.10618 0.928196i
\(122\) −4.58296 5.46176i −0.414922 0.494484i
\(123\) 0 0
\(124\) 0.575791 0.209571i 0.0517075 0.0188200i
\(125\) −8.48316 7.28258i −0.758757 0.651374i
\(126\) 0 0
\(127\) 2.90443 + 1.67688i 0.257727 + 0.148799i 0.623297 0.781985i \(-0.285793\pi\)
−0.365570 + 0.930784i \(0.619126\pi\)
\(128\) 5.76393 + 1.01634i 0.509464 + 0.0898323i
\(129\) 0 0
\(130\) −4.16210 1.00295i −0.365040 0.0879649i
\(131\) 0.958255 + 5.43454i 0.0837231 + 0.474818i 0.997625 + 0.0688819i \(0.0219432\pi\)
−0.913902 + 0.405936i \(0.866946\pi\)
\(132\) 0 0
\(133\) 6.69329 7.97675i 0.580382 0.691672i
\(134\) −4.28829 −0.370452
\(135\) 0 0
\(136\) −16.2819 −1.39616
\(137\) 3.81854 4.55076i 0.326240 0.388798i −0.577848 0.816145i \(-0.696107\pi\)
0.904088 + 0.427347i \(0.140552\pi\)
\(138\) 0 0
\(139\) 2.76633 + 15.6886i 0.234637 + 1.33069i 0.843377 + 0.537323i \(0.180564\pi\)
−0.608740 + 0.793370i \(0.708325\pi\)
\(140\) 0.556197 2.30813i 0.0470072 0.195073i
\(141\) 0 0
\(142\) 0.0318263 + 0.00561184i 0.00267081 + 0.000470935i
\(143\) 6.94267 + 4.00835i 0.580575 + 0.335195i
\(144\) 0 0
\(145\) 8.57942 + 11.6149i 0.712482 + 0.964569i
\(146\) −6.72780 + 2.44872i −0.556796 + 0.202657i
\(147\) 0 0
\(148\) −1.10376 1.31541i −0.0907286 0.108126i
\(149\) 15.5994 13.0894i 1.27795 1.07233i 0.284430 0.958697i \(-0.408196\pi\)
0.993523 0.113632i \(-0.0362486\pi\)
\(150\) 0 0
\(151\) −1.80439 + 0.656743i −0.146839 + 0.0534450i −0.414394 0.910098i \(-0.636006\pi\)
0.267555 + 0.963543i \(0.413784\pi\)
\(152\) 12.1026 6.98743i 0.981649 0.566755i
\(153\) 0 0
\(154\) 7.30642 12.6551i 0.588768 1.01978i
\(155\) −0.181768 + 2.93121i −0.0145999 + 0.235441i
\(156\) 0 0
\(157\) −4.36413 + 11.9904i −0.348296 + 0.956935i 0.634611 + 0.772832i \(0.281160\pi\)
−0.982907 + 0.184103i \(0.941062\pi\)
\(158\) −20.1933 + 3.56063i −1.60649 + 0.283268i
\(159\) 0 0
\(160\) 3.18874 4.80883i 0.252092 0.380171i
\(161\) 11.7009 0.922163
\(162\) 0 0
\(163\) 24.6659i 1.93198i −0.258578 0.965990i \(-0.583254\pi\)
0.258578 0.965990i \(-0.416746\pi\)
\(164\) −1.52391 1.27871i −0.118997 0.0998503i
\(165\) 0 0
\(166\) −2.32929 13.2100i −0.180788 1.02530i
\(167\) 1.83304 5.03625i 0.141845 0.389716i −0.848345 0.529444i \(-0.822401\pi\)
0.990190 + 0.139728i \(0.0446227\pi\)
\(168\) 0 0
\(169\) 1.84231 10.4483i 0.141717 0.803714i
\(170\) 5.89720 13.5314i 0.452295 1.03781i
\(171\) 0 0
\(172\) −3.40939 + 1.96841i −0.259964 + 0.150090i
\(173\) −4.89834 13.4581i −0.372414 1.02320i −0.974426 0.224711i \(-0.927856\pi\)
0.602012 0.798487i \(-0.294366\pi\)
\(174\) 0 0
\(175\) 9.07640 + 6.86364i 0.686111 + 0.518843i
\(176\) 11.3172 9.49622i 0.853063 0.715805i
\(177\) 0 0
\(178\) 1.96781 + 5.40651i 0.147493 + 0.405235i
\(179\) 2.84521 + 4.92805i 0.212661 + 0.368340i 0.952547 0.304393i \(-0.0984536\pi\)
−0.739885 + 0.672733i \(0.765120\pi\)
\(180\) 0 0
\(181\) 5.07635 8.79249i 0.377322 0.653541i −0.613350 0.789811i \(-0.710178\pi\)
0.990672 + 0.136271i \(0.0435117\pi\)
\(182\) 4.29126 + 0.756665i 0.318090 + 0.0560878i
\(183\) 0 0
\(184\) 14.7564 + 5.37091i 1.08786 + 0.395948i
\(185\) 7.89323 2.33083i 0.580322 0.171366i
\(186\) 0 0
\(187\) −17.7663 + 21.1731i −1.29920 + 1.54833i
\(188\) 3.16794i 0.231046i
\(189\) 0 0
\(190\) 1.42354 + 12.5889i 0.103274 + 0.913291i
\(191\) 4.87022 + 4.08660i 0.352397 + 0.295696i 0.801752 0.597657i \(-0.203902\pi\)
−0.449355 + 0.893353i \(0.648346\pi\)
\(192\) 0 0
\(193\) −19.2071 + 3.38673i −1.38256 + 0.243782i −0.814957 0.579521i \(-0.803240\pi\)
−0.567601 + 0.823304i \(0.692128\pi\)
\(194\) −8.44165 3.07251i −0.606075 0.220593i
\(195\) 0 0
\(196\) 0.147474 0.836365i 0.0105338 0.0597404i
\(197\) −7.83426 4.52311i −0.558168 0.322259i 0.194242 0.980954i \(-0.437775\pi\)
−0.752410 + 0.658695i \(0.771109\pi\)
\(198\) 0 0
\(199\) 5.04715 + 8.74191i 0.357783 + 0.619698i 0.987590 0.157054i \(-0.0501995\pi\)
−0.629807 + 0.776751i \(0.716866\pi\)
\(200\) 8.29603 + 12.8222i 0.586618 + 0.906664i
\(201\) 0 0
\(202\) 0.347282 + 0.413875i 0.0244347 + 0.0291201i
\(203\) −9.44710 11.2586i −0.663057 0.790200i
\(204\) 0 0
\(205\) 8.53650 4.24713i 0.596215 0.296633i
\(206\) −1.40418 2.43211i −0.0978338 0.169453i
\(207\) 0 0
\(208\) 3.81516 + 2.20268i 0.264534 + 0.152729i
\(209\) 4.11947 23.3627i 0.284950 1.61603i
\(210\) 0 0
\(211\) 3.35281 + 1.22032i 0.230817 + 0.0840106i 0.454839 0.890573i \(-0.349697\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(212\) −3.05305 + 0.538336i −0.209685 + 0.0369730i
\(213\) 0 0
\(214\) 4.14280 + 3.47622i 0.283196 + 0.237630i
\(215\) −2.12018 18.7495i −0.144595 1.27870i
\(216\) 0 0
\(217\) 2.98913i 0.202915i
\(218\) −6.32986 + 7.54363i −0.428712 + 0.510919i
\(219\) 0 0
\(220\) −1.53185 5.18755i −0.103278 0.349745i
\(221\) −7.74487 2.81890i −0.520977 0.189620i
\(222\) 0 0
\(223\) −18.2797 3.22320i −1.22410 0.215842i −0.476010 0.879440i \(-0.657917\pi\)
−0.748089 + 0.663598i \(0.769029\pi\)
\(224\) −2.93637 + 5.08593i −0.196194 + 0.339818i
\(225\) 0 0
\(226\) 9.74376 + 16.8767i 0.648145 + 1.12262i
\(227\) 8.41561 + 23.1217i 0.558564 + 1.53464i 0.821722 + 0.569888i \(0.193014\pi\)
−0.263158 + 0.964753i \(0.584764\pi\)
\(228\) 0 0
\(229\) −1.56307 + 1.31157i −0.103291 + 0.0866713i −0.692971 0.720966i \(-0.743698\pi\)
0.589680 + 0.807637i \(0.299254\pi\)
\(230\) −9.80827 + 10.3183i −0.646738 + 0.680367i
\(231\) 0 0
\(232\) −6.74618 18.5350i −0.442908 1.21688i
\(233\) 7.51547 4.33906i 0.492355 0.284261i −0.233196 0.972430i \(-0.574918\pi\)
0.725551 + 0.688169i \(0.241585\pi\)
\(234\) 0 0
\(235\) 13.9193 + 6.06626i 0.907993 + 0.395719i
\(236\) 0.244351 1.38578i 0.0159059 0.0902068i
\(237\) 0 0
\(238\) −5.13829 + 14.1173i −0.333066 + 0.915092i
\(239\) −0.654990 3.71463i −0.0423678 0.240280i 0.956268 0.292491i \(-0.0944842\pi\)
−0.998636 + 0.0522114i \(0.983373\pi\)
\(240\) 0 0
\(241\) 0.433776 + 0.363981i 0.0279420 + 0.0234461i 0.656652 0.754194i \(-0.271972\pi\)
−0.628710 + 0.777640i \(0.716417\pi\)
\(242\) 19.6699i 1.26443i
\(243\) 0 0
\(244\) 2.68612 0.171961
\(245\) 3.39242 + 2.24952i 0.216734 + 0.143717i
\(246\) 0 0
\(247\) 6.96662 1.22840i 0.443275 0.0781614i
\(248\) 1.37205 3.76969i 0.0871256 0.239375i
\(249\) 0 0
\(250\) −13.6608 + 2.25045i −0.863988 + 0.142331i
\(251\) −0.425928 + 0.737730i −0.0268844 + 0.0465651i −0.879155 0.476537i \(-0.841892\pi\)
0.852270 + 0.523102i \(0.175225\pi\)
\(252\) 0 0
\(253\) 23.0861 13.3288i 1.45141 0.837973i
\(254\) 3.90260 1.42043i 0.244871 0.0891257i
\(255\) 0 0
\(256\) −8.07425 + 6.77510i −0.504641 + 0.423444i
\(257\) 11.8239 + 14.0912i 0.737553 + 0.878982i 0.996209 0.0869875i \(-0.0277240\pi\)
−0.258656 + 0.965970i \(0.583280\pi\)
\(258\) 0 0
\(259\) −7.87153 + 2.86500i −0.489113 + 0.178023i
\(260\) 1.29738 0.958312i 0.0804598 0.0594320i
\(261\) 0 0
\(262\) 5.91805 + 3.41679i 0.365618 + 0.211090i
\(263\) −6.87408 1.21209i −0.423874 0.0747404i −0.0423576 0.999103i \(-0.513487\pi\)
−0.381516 + 0.924362i \(0.624598\pi\)
\(264\) 0 0
\(265\) 3.48094 14.4453i 0.213832 0.887370i
\(266\) −2.23913 12.6987i −0.137290 0.778610i
\(267\) 0 0
\(268\) 1.03848 1.23761i 0.0634352 0.0755992i
\(269\) 9.05450 0.552062 0.276031 0.961149i \(-0.410981\pi\)
0.276031 + 0.961149i \(0.410981\pi\)
\(270\) 0 0
\(271\) −2.68123 −0.162873 −0.0814364 0.996679i \(-0.525951\pi\)
−0.0814364 + 0.996679i \(0.525951\pi\)
\(272\) −9.76300 + 11.6351i −0.591969 + 0.705481i
\(273\) 0 0
\(274\) −1.27743 7.24467i −0.0771724 0.437667i
\(275\) 25.7264 + 3.20296i 1.55136 + 0.193146i
\(276\) 0 0
\(277\) 9.53431 + 1.68116i 0.572861 + 0.101011i 0.452572 0.891728i \(-0.350507\pi\)
0.120289 + 0.992739i \(0.461618\pi\)
\(278\) 17.0845 + 9.86372i 1.02466 + 0.591587i
\(279\) 0 0
\(280\) −9.23526 12.5028i −0.551913 0.747187i
\(281\) 12.4600 4.53506i 0.743300 0.270539i 0.0575163 0.998345i \(-0.481682\pi\)
0.685784 + 0.727806i \(0.259460\pi\)
\(282\) 0 0
\(283\) 12.5849 + 14.9981i 0.748094 + 0.891543i 0.997033 0.0769758i \(-0.0245264\pi\)
−0.248939 + 0.968519i \(0.580082\pi\)
\(284\) −0.00932686 + 0.00782616i −0.000553447 + 0.000464397i
\(285\) 0 0
\(286\) 9.32865 3.39535i 0.551615 0.200771i
\(287\) −8.40428 + 4.85221i −0.496089 + 0.286417i
\(288\) 0 0
\(289\) 5.70798 9.88651i 0.335763 0.581559i
\(290\) 17.8472 + 1.10673i 1.04803 + 0.0649892i
\(291\) 0 0
\(292\) 0.922540 2.53466i 0.0539875 0.148330i
\(293\) −29.7888 + 5.25257i −1.74028 + 0.306858i −0.951462 0.307767i \(-0.900418\pi\)
−0.788819 + 0.614625i \(0.789307\pi\)
\(294\) 0 0
\(295\) 5.62094 + 3.72726i 0.327264 + 0.217009i
\(296\) −11.2421 −0.653436
\(297\) 0 0
\(298\) 25.2169i 1.46077i
\(299\) 6.08938 + 5.10960i 0.352158 + 0.295496i
\(300\) 0 0
\(301\) 3.33490 + 18.9131i 0.192220 + 1.09014i
\(302\) −0.813265 + 2.23443i −0.0467982 + 0.128577i
\(303\) 0 0
\(304\) 2.26375 12.8384i 0.129835 0.736330i
\(305\) −5.14363 + 11.8022i −0.294523 + 0.675794i
\(306\) 0 0
\(307\) 15.8229 9.13533i 0.903058 0.521381i 0.0248672 0.999691i \(-0.492084\pi\)
0.878191 + 0.478310i \(0.158750\pi\)
\(308\) 1.88292 + 5.17329i 0.107289 + 0.294775i
\(309\) 0 0
\(310\) 2.63591 + 2.50563i 0.149710 + 0.142310i
\(311\) −25.8479 + 21.6890i −1.46570 + 1.22987i −0.545681 + 0.837993i \(0.683729\pi\)
−0.920018 + 0.391875i \(0.871826\pi\)
\(312\) 0 0
\(313\) 0.953665 + 2.62017i 0.0539043 + 0.148101i 0.963723 0.266906i \(-0.0860014\pi\)
−0.909818 + 0.415007i \(0.863779\pi\)
\(314\) 7.90048 + 13.6840i 0.445850 + 0.772235i
\(315\) 0 0
\(316\) 3.86253 6.69010i 0.217284 0.376348i
\(317\) 2.71702 + 0.479083i 0.152603 + 0.0269080i 0.249428 0.968393i \(-0.419758\pi\)
−0.0968248 + 0.995301i \(0.530869\pi\)
\(318\) 0 0
\(319\) −31.4642 11.4520i −1.76166 0.641190i
\(320\) −5.63225 19.0733i −0.314852 1.06623i
\(321\) 0 0
\(322\) 9.31377 11.0997i 0.519036 0.618563i
\(323\) 24.3896i 1.35707i
\(324\) 0 0
\(325\) 1.72629 + 7.53547i 0.0957572 + 0.417993i
\(326\) −23.3985 19.6337i −1.29592 1.08741i
\(327\) 0 0
\(328\) −12.8261 + 2.26160i −0.708206 + 0.124876i
\(329\) −14.5221 5.28560i −0.800627 0.291404i
\(330\) 0 0
\(331\) −4.85007 + 27.5061i −0.266584 + 1.51187i 0.497902 + 0.867233i \(0.334104\pi\)
−0.764486 + 0.644640i \(0.777007\pi\)
\(332\) 4.37653 + 2.52679i 0.240193 + 0.138676i
\(333\) 0 0
\(334\) −3.31840 5.74763i −0.181575 0.314496i
\(335\) 3.44923 + 6.93276i 0.188452 + 0.378777i
\(336\) 0 0
\(337\) 9.17286 + 10.9318i 0.499677 + 0.595492i 0.955651 0.294501i \(-0.0951534\pi\)
−0.455974 + 0.889993i \(0.650709\pi\)
\(338\) −8.44497 10.0643i −0.459346 0.547427i
\(339\) 0 0
\(340\) 2.47708 + 4.97879i 0.134338 + 0.270013i
\(341\) −3.40498 5.89759i −0.184390 0.319372i
\(342\) 0 0
\(343\) −17.3847 10.0371i −0.938685 0.541950i
\(344\) −4.47567 + 25.3828i −0.241312 + 1.36855i
\(345\) 0 0
\(346\) −16.6656 6.06577i −0.895946 0.326098i
\(347\) −17.3984 + 3.06781i −0.933994 + 0.164688i −0.619880 0.784697i \(-0.712819\pi\)
−0.314114 + 0.949385i \(0.601708\pi\)
\(348\) 0 0
\(349\) 18.7439 + 15.7280i 1.00334 + 0.841899i 0.987443 0.157975i \(-0.0504965\pi\)
0.0158927 + 0.999874i \(0.494941\pi\)
\(350\) 13.7356 3.14667i 0.734201 0.168197i
\(351\) 0 0
\(352\) 13.3795i 0.713129i
\(353\) 20.5015 24.4328i 1.09119 1.30043i 0.140567 0.990071i \(-0.455108\pi\)
0.950621 0.310355i \(-0.100448\pi\)
\(354\) 0 0
\(355\) −0.0165266 0.0559666i −0.000877141 0.00297040i
\(356\) −2.03687 0.741359i −0.107954 0.0392920i
\(357\) 0 0
\(358\) 6.93958 + 1.22364i 0.366768 + 0.0646711i
\(359\) 4.13080 7.15476i 0.218015 0.377614i −0.736186 0.676780i \(-0.763375\pi\)
0.954201 + 0.299166i \(0.0967083\pi\)
\(360\) 0 0
\(361\) −0.966856 1.67464i −0.0508871 0.0881391i
\(362\) −4.30002 11.8142i −0.226004 0.620941i
\(363\) 0 0
\(364\) −1.25757 + 1.05523i −0.0659148 + 0.0553091i
\(365\) 9.37019 + 8.90705i 0.490458 + 0.466216i
\(366\) 0 0
\(367\) −7.40606 20.3480i −0.386593 1.06216i −0.968525 0.248918i \(-0.919925\pi\)
0.581931 0.813238i \(-0.302297\pi\)
\(368\) 12.6864 7.32448i 0.661323 0.381815i
\(369\) 0 0
\(370\) 4.07183 9.34296i 0.211684 0.485717i
\(371\) −2.62615 + 14.8936i −0.136343 + 0.773238i
\(372\) 0 0
\(373\) −10.4509 + 28.7136i −0.541126 + 1.48673i 0.304267 + 0.952587i \(0.401589\pi\)
−0.845393 + 0.534145i \(0.820634\pi\)
\(374\) 5.94343 + 33.7068i 0.307327 + 1.74294i
\(375\) 0 0
\(376\) −15.8881 13.3317i −0.819365 0.687529i
\(377\) 9.98457i 0.514232i
\(378\) 0 0
\(379\) −6.49045 −0.333392 −0.166696 0.986008i \(-0.553310\pi\)
−0.166696 + 0.986008i \(0.553310\pi\)
\(380\) −3.97791 2.63776i −0.204062 0.135314i
\(381\) 0 0
\(382\) 7.75324 1.36711i 0.396690 0.0699472i
\(383\) 2.57705 7.08040i 0.131681 0.361791i −0.856276 0.516519i \(-0.827228\pi\)
0.987957 + 0.154727i \(0.0494499\pi\)
\(384\) 0 0
\(385\) −26.3360 1.63312i −1.34220 0.0832316i
\(386\) −12.0758 + 20.9160i −0.614645 + 1.06460i
\(387\) 0 0
\(388\) 2.93102 1.69222i 0.148800 0.0859096i
\(389\) 7.42372 2.70201i 0.376398 0.136997i −0.146892 0.989153i \(-0.546927\pi\)
0.523289 + 0.852155i \(0.324705\pi\)
\(390\) 0 0
\(391\) −20.9946 + 17.6165i −1.06174 + 0.890906i
\(392\) −3.57399 4.25931i −0.180514 0.215128i
\(393\) 0 0
\(394\) −10.5267 + 3.83139i −0.530325 + 0.193023i
\(395\) 21.9986 + 29.7820i 1.10687 + 1.49850i
\(396\) 0 0
\(397\) 1.40079 + 0.808746i 0.0703036 + 0.0405898i 0.534740 0.845017i \(-0.320410\pi\)
−0.464436 + 0.885607i \(0.653743\pi\)
\(398\) 12.3102 + 2.17062i 0.617054 + 0.108803i
\(399\) 0 0
\(400\) 14.1372 + 1.76010i 0.706862 + 0.0880050i
\(401\) −2.06958 11.7372i −0.103350 0.586127i −0.991867 0.127282i \(-0.959375\pi\)
0.888517 0.458844i \(-0.151736\pi\)
\(402\) 0 0
\(403\) 1.30530 1.55560i 0.0650216 0.0774898i
\(404\) −0.203545 −0.0101268
\(405\) 0 0
\(406\) −18.1999 −0.903244
\(407\) −12.2671 + 14.6193i −0.608055 + 0.724652i
\(408\) 0 0
\(409\) −1.98160 11.2382i −0.0979836 0.555693i −0.993792 0.111253i \(-0.964514\pi\)
0.895809 0.444440i \(-0.146597\pi\)
\(410\) 2.76601 11.4785i 0.136604 0.566884i
\(411\) 0 0
\(412\) 1.04196 + 0.183725i 0.0513336 + 0.00905149i
\(413\) −5.94484 3.43226i −0.292527 0.168890i
\(414\) 0 0
\(415\) −19.4828 + 14.3910i −0.956372 + 0.706428i
\(416\) −3.74908 + 1.36455i −0.183814 + 0.0669027i
\(417\) 0 0
\(418\) −18.8832 22.5041i −0.923609 1.10071i
\(419\) 24.7402 20.7595i 1.20864 1.01417i 0.209296 0.977852i \(-0.432883\pi\)
0.999340 0.0363142i \(-0.0115617\pi\)
\(420\) 0 0
\(421\) −12.6800 + 4.61514i −0.617986 + 0.224928i −0.631994 0.774974i \(-0.717763\pi\)
0.0140082 + 0.999902i \(0.495541\pi\)
\(422\) 3.82641 2.20918i 0.186267 0.107541i
\(423\) 0 0
\(424\) −10.1483 + 17.5774i −0.492846 + 0.853634i
\(425\) −26.6191 + 1.34993i −1.29122 + 0.0654811i
\(426\) 0 0
\(427\) 4.48169 12.3134i 0.216884 0.595885i
\(428\) −2.00649 + 0.353799i −0.0969875 + 0.0171015i
\(429\) 0 0
\(430\) −19.4737 12.9131i −0.939106 0.622723i
\(431\) −23.0480 −1.11018 −0.555092 0.831789i \(-0.687317\pi\)
−0.555092 + 0.831789i \(0.687317\pi\)
\(432\) 0 0
\(433\) 28.7044i 1.37944i 0.724074 + 0.689722i \(0.242267\pi\)
−0.724074 + 0.689722i \(0.757733\pi\)
\(434\) −2.83554 2.37930i −0.136110 0.114210i
\(435\) 0 0
\(436\) −0.644233 3.65363i −0.0308532 0.174977i
\(437\) 8.04538 22.1045i 0.384863 1.05740i
\(438\) 0 0
\(439\) −0.464755 + 2.63576i −0.0221816 + 0.125798i −0.993888 0.110395i \(-0.964789\pi\)
0.971706 + 0.236193i \(0.0758996\pi\)
\(440\) −32.4635 14.1482i −1.54764 0.674488i
\(441\) 0 0
\(442\) −8.83886 + 5.10312i −0.420422 + 0.242731i
\(443\) −0.954638 2.62285i −0.0453562 0.124615i 0.914947 0.403575i \(-0.132233\pi\)
−0.960303 + 0.278960i \(0.910010\pi\)
\(444\) 0 0
\(445\) 7.15777 7.52996i 0.339311 0.356954i
\(446\) −17.6079 + 14.7748i −0.833760 + 0.699608i
\(447\) 0 0
\(448\) 6.92304 + 19.0209i 0.327083 + 0.898653i
\(449\) −12.0160 20.8123i −0.567069 0.982192i −0.996854 0.0792608i \(-0.974744\pi\)
0.429785 0.902931i \(-0.358589\pi\)
\(450\) 0 0
\(451\) −11.0545 + 19.1470i −0.520536 + 0.901595i
\(452\) −7.23026 1.27489i −0.340083 0.0599658i
\(453\) 0 0
\(454\) 28.6323 + 10.4213i 1.34378 + 0.489097i
\(455\) −2.22834 7.54618i −0.104466 0.353770i
\(456\) 0 0
\(457\) −19.7351 + 23.5193i −0.923167 + 1.10019i 0.0715399 + 0.997438i \(0.477209\pi\)
−0.994707 + 0.102750i \(0.967236\pi\)
\(458\) 2.52675i 0.118067i
\(459\) 0 0
\(460\) −0.602649 5.32943i −0.0280987 0.248486i
\(461\) 8.31123 + 6.97395i 0.387093 + 0.324809i 0.815479 0.578786i \(-0.196473\pi\)
−0.428387 + 0.903595i \(0.640918\pi\)
\(462\) 0 0
\(463\) 32.0801 5.65658i 1.49089 0.262884i 0.631968 0.774995i \(-0.282247\pi\)
0.858919 + 0.512111i \(0.171136\pi\)
\(464\) −17.2903 6.29316i −0.802682 0.292153i
\(465\) 0 0
\(466\) 1.86609 10.5831i 0.0864450 0.490254i
\(467\) −11.8736 6.85522i −0.549445 0.317222i 0.199453 0.979907i \(-0.436083\pi\)
−0.748898 + 0.662685i \(0.769417\pi\)
\(468\) 0 0
\(469\) −3.94064 6.82538i −0.181962 0.315167i
\(470\) 16.8341 8.37540i 0.776498 0.386329i
\(471\) 0 0
\(472\) −5.92178 7.05730i −0.272572 0.324839i
\(473\) 28.1241 + 33.5170i 1.29315 + 1.54111i
\(474\) 0 0
\(475\) 19.2070 12.4271i 0.881279 0.570194i
\(476\) −2.82998 4.90167i −0.129712 0.224668i
\(477\) 0 0
\(478\) −4.04513 2.33545i −0.185020 0.106821i
\(479\) −2.05131 + 11.6335i −0.0937266 + 0.531550i 0.901403 + 0.432980i \(0.142538\pi\)
−0.995130 + 0.0985701i \(0.968573\pi\)
\(480\) 0 0
\(481\) −5.34758 1.94636i −0.243829 0.0887465i
\(482\) 0.690558 0.121764i 0.0314541 0.00554620i
\(483\) 0 0
\(484\) 5.67678 + 4.76339i 0.258036 + 0.216518i
\(485\) 1.82270 + 16.1187i 0.0827643 + 0.731913i
\(486\) 0 0
\(487\) 31.6087i 1.43233i −0.697933 0.716163i \(-0.745897\pi\)
0.697933 0.716163i \(-0.254103\pi\)
\(488\) 11.3040 13.4716i 0.511709 0.609831i
\(489\) 0 0
\(490\) 4.83425 1.42753i 0.218389 0.0644890i
\(491\) 15.3997 + 5.60502i 0.694977 + 0.252951i 0.665265 0.746608i \(-0.268319\pi\)
0.0297121 + 0.999558i \(0.490541\pi\)
\(492\) 0 0
\(493\) 33.9012 + 5.97769i 1.52683 + 0.269222i
\(494\) 4.38004 7.58644i 0.197067 0.341330i
\(495\) 0 0
\(496\) −1.87111 3.24087i −0.0840155 0.145519i
\(497\) 0.0203142 + 0.0558127i 0.000911215 + 0.00250354i
\(498\) 0 0
\(499\) 30.4626 25.5612i 1.36369 1.14427i 0.388871 0.921292i \(-0.372865\pi\)
0.974823 0.222982i \(-0.0715791\pi\)
\(500\) 2.65871 4.48754i 0.118901 0.200689i
\(501\) 0 0
\(502\) 0.360791 + 0.991264i 0.0161029 + 0.0442423i
\(503\) 5.13479 2.96457i 0.228949 0.132184i −0.381138 0.924518i \(-0.624468\pi\)
0.610087 + 0.792334i \(0.291134\pi\)
\(504\) 0 0
\(505\) 0.389768 0.894337i 0.0173444 0.0397975i
\(506\) 5.73228 32.5094i 0.254831 1.44522i
\(507\) 0 0
\(508\) −0.535138 + 1.47028i −0.0237429 + 0.0652331i
\(509\) 7.53016 + 42.7057i 0.333768 + 1.89290i 0.439067 + 0.898454i \(0.355309\pi\)
−0.105298 + 0.994441i \(0.533580\pi\)
\(510\) 0 0
\(511\) −10.0798 8.45798i −0.445905 0.374159i
\(512\) 24.7579i 1.09416i
\(513\) 0 0
\(514\) 22.7787 1.00473
\(515\) −2.80249 + 4.22633i −0.123492 + 0.186235i
\(516\) 0 0
\(517\) −34.6731 + 6.11381i −1.52492 + 0.268885i
\(518\) −3.54783 + 9.74757i −0.155883 + 0.428284i
\(519\) 0 0
\(520\) 0.653571 10.5396i 0.0286610 0.462191i
\(521\) 16.3247 28.2751i 0.715196 1.23876i −0.247688 0.968840i \(-0.579671\pi\)
0.962884 0.269916i \(-0.0869959\pi\)
\(522\) 0 0
\(523\) −15.2548 + 8.80738i −0.667047 + 0.385120i −0.794957 0.606666i \(-0.792507\pi\)
0.127910 + 0.991786i \(0.459173\pi\)
\(524\) −2.41925 + 0.880534i −0.105685 + 0.0384663i
\(525\) 0 0
\(526\) −6.62147 + 5.55607i −0.288710 + 0.242256i
\(527\) 4.50033 + 5.36328i 0.196037 + 0.233628i
\(528\) 0 0
\(529\) 3.22579 1.17409i 0.140252 0.0510475i
\(530\) −10.9323 14.8003i −0.474870 0.642886i
\(531\) 0 0
\(532\) 4.20713 + 2.42899i 0.182402 + 0.105310i
\(533\) −6.49261 1.14482i −0.281226 0.0495878i
\(534\) 0 0
\(535\) 2.28770 9.49361i 0.0989060 0.410444i
\(536\) −1.83671 10.4165i −0.0793340 0.449925i
\(537\) 0 0
\(538\) 7.20724 8.58925i 0.310726 0.370309i
\(539\) −9.43865 −0.406551
\(540\) 0 0
\(541\) 40.8023 1.75423 0.877113 0.480284i \(-0.159466\pi\)
0.877113 + 0.480284i \(0.159466\pi\)
\(542\) −2.13421 + 2.54346i −0.0916723 + 0.109251i
\(543\) 0 0
\(544\) −2.38859 13.5464i −0.102410 0.580797i
\(545\) 17.2869 + 4.16568i 0.740490 + 0.178438i
\(546\) 0 0
\(547\) 29.8441 + 5.26232i 1.27604 + 0.225000i 0.770298 0.637684i \(-0.220107\pi\)
0.505743 + 0.862684i \(0.331219\pi\)
\(548\) 2.40018 + 1.38575i 0.102531 + 0.0591961i
\(549\) 0 0
\(550\) 23.5162 21.8550i 1.00273 0.931899i
\(551\) −27.7646 + 10.1055i −1.18281 + 0.430508i
\(552\) 0 0
\(553\) −24.2234 28.8684i −1.03008 1.22761i
\(554\) 9.18393 7.70623i 0.390188 0.327407i
\(555\) 0 0
\(556\) −6.98398 + 2.54196i −0.296187 + 0.107803i
\(557\) −24.6008 + 14.2033i −1.04237 + 0.601812i −0.920503 0.390735i \(-0.872221\pi\)
−0.121865 + 0.992547i \(0.538888\pi\)
\(558\) 0 0
\(559\) −6.52350 + 11.2990i −0.275915 + 0.477898i
\(560\) −14.4722 0.897439i −0.611563 0.0379237i
\(561\) 0 0
\(562\) 5.61591 15.4296i 0.236893 0.650858i
\(563\) 6.21863 1.09651i 0.262084 0.0462124i −0.0410621 0.999157i \(-0.513074\pi\)
0.303146 + 0.952944i \(0.401963\pi\)
\(564\) 0 0
\(565\) 19.4468 29.3270i 0.818133 1.23380i
\(566\) 24.2448 1.01909
\(567\) 0 0
\(568\) 0.0797117i 0.00334463i
\(569\) −2.76710 2.32188i −0.116003 0.0973381i 0.582941 0.812515i \(-0.301902\pi\)
−0.698944 + 0.715176i \(0.746346\pi\)
\(570\) 0 0
\(571\) 6.03614 + 34.2327i 0.252605 + 1.43259i 0.802147 + 0.597127i \(0.203691\pi\)
−0.549542 + 0.835466i \(0.685198\pi\)
\(572\) −1.27918 + 3.51451i −0.0534851 + 0.146949i
\(573\) 0 0
\(574\) −2.08678 + 11.8347i −0.0871006 + 0.493972i
\(575\) 24.5704 + 7.55738i 1.02466 + 0.315165i
\(576\) 0 0
\(577\) −19.6374 + 11.3377i −0.817517 + 0.471994i −0.849559 0.527493i \(-0.823132\pi\)
0.0320424 + 0.999487i \(0.489799\pi\)
\(578\) −4.83505 13.2842i −0.201112 0.552550i
\(579\) 0 0
\(580\) −4.64140 + 4.88274i −0.192724 + 0.202745i
\(581\) 18.8851 15.8465i 0.783485 0.657422i
\(582\) 0 0
\(583\) 11.7842 + 32.3768i 0.488051 + 1.34091i
\(584\) −8.82966 15.2934i −0.365374 0.632847i
\(585\) 0 0
\(586\) −18.7288 + 32.4391i −0.773678 + 1.34005i
\(587\) 18.6058 + 3.28071i 0.767946 + 0.135410i 0.543878 0.839164i \(-0.316955\pi\)
0.224067 + 0.974574i \(0.428066\pi\)
\(588\) 0 0
\(589\) −5.64683 2.05528i −0.232673 0.0846862i
\(590\) 8.00992 2.36528i 0.329763 0.0973772i
\(591\) 0 0
\(592\) −6.74104 + 8.03366i −0.277055 + 0.330181i
\(593\) 8.73461i 0.358688i −0.983786 0.179344i \(-0.942603\pi\)
0.983786 0.179344i \(-0.0573974\pi\)
\(594\) 0 0
\(595\) 26.9560 3.04817i 1.10509 0.124963i
\(596\) 7.27765 + 6.10667i 0.298104 + 0.250139i
\(597\) 0 0
\(598\) 9.69410 1.70933i 0.396421 0.0698998i
\(599\) −6.00796 2.18672i −0.245479 0.0893469i 0.216351 0.976316i \(-0.430585\pi\)
−0.461829 + 0.886969i \(0.652807\pi\)
\(600\) 0 0
\(601\) 2.30763 13.0872i 0.0941304 0.533840i −0.900880 0.434068i \(-0.857078\pi\)
0.995010 0.0997716i \(-0.0318112\pi\)
\(602\) 20.5959 + 11.8910i 0.839425 + 0.484642i
\(603\) 0 0
\(604\) −0.447916 0.775814i −0.0182255 0.0315674i
\(605\) −31.7998 + 15.8212i −1.29284 + 0.643225i
\(606\) 0 0
\(607\) 2.88515 + 3.43839i 0.117105 + 0.139560i 0.821412 0.570335i \(-0.193187\pi\)
−0.704307 + 0.709895i \(0.748742\pi\)
\(608\) 7.58895 + 9.04416i 0.307773 + 0.366789i
\(609\) 0 0
\(610\) 7.10156 + 14.2737i 0.287534 + 0.577926i
\(611\) −5.24941 9.09225i −0.212369 0.367833i
\(612\) 0 0
\(613\) 20.1066 + 11.6086i 0.812100 + 0.468866i 0.847685 0.530501i \(-0.177996\pi\)
−0.0355848 + 0.999367i \(0.511329\pi\)
\(614\) 3.92882 22.2814i 0.158554 0.899205i
\(615\) 0 0
\(616\) 33.8694 + 12.3275i 1.36464 + 0.496687i
\(617\) 43.5312 7.67572i 1.75250 0.309013i 0.796993 0.603988i \(-0.206423\pi\)
0.955505 + 0.294975i \(0.0953114\pi\)
\(618\) 0 0
\(619\) −3.65944 3.07064i −0.147085 0.123419i 0.566276 0.824216i \(-0.308384\pi\)
−0.713361 + 0.700796i \(0.752828\pi\)
\(620\) −1.36146 + 0.153953i −0.0546775 + 0.00618291i
\(621\) 0 0
\(622\) 41.7838i 1.67538i
\(623\) −6.79689 + 8.10022i −0.272312 + 0.324529i
\(624\) 0 0
\(625\) 14.6262 + 20.2750i 0.585047 + 0.811000i
\(626\) 3.24464 + 1.18095i 0.129682 + 0.0472004i
\(627\) 0 0
\(628\) −5.86248 1.03371i −0.233938 0.0412496i
\(629\) 9.81015 16.9917i 0.391156 0.677502i
\(630\) 0 0
\(631\) −18.1400 31.4193i −0.722140 1.25078i −0.960140 0.279518i \(-0.909825\pi\)
0.238000 0.971265i \(-0.423508\pi\)
\(632\) −17.2980 47.5258i −0.688076 1.89047i
\(633\) 0 0
\(634\) 2.61717 2.19607i 0.103941 0.0872169i
\(635\) −5.43538 5.16672i −0.215696 0.205035i
\(636\) 0 0
\(637\) −0.962632 2.64481i −0.0381409 0.104791i
\(638\) −35.9086 + 20.7318i −1.42163 + 0.820781i
\(639\) 0 0
\(640\) −11.9975 5.22872i −0.474242 0.206683i
\(641\) −3.91713 + 22.2151i −0.154717 + 0.877445i 0.804327 + 0.594187i \(0.202526\pi\)
−0.959044 + 0.283258i \(0.908585\pi\)
\(642\) 0 0
\(643\) 1.31828 3.62196i 0.0519881 0.142836i −0.910981 0.412449i \(-0.864674\pi\)
0.962969 + 0.269613i \(0.0868957\pi\)
\(644\) 0.947926 + 5.37595i 0.0373535 + 0.211842i
\(645\) 0 0
\(646\) 23.1364 + 19.4137i 0.910288 + 0.763823i
\(647\) 16.5713i 0.651486i −0.945458 0.325743i \(-0.894386\pi\)
0.945458 0.325743i \(-0.105614\pi\)
\(648\) 0 0
\(649\) −15.6390 −0.613884
\(650\) 8.52237 + 4.36053i 0.334275 + 0.171034i
\(651\) 0 0
\(652\) 11.3326 1.99825i 0.443821 0.0782576i
\(653\) 1.76642 4.85320i 0.0691254 0.189920i −0.900320 0.435230i \(-0.856667\pi\)
0.969445 + 0.245309i \(0.0788894\pi\)
\(654\) 0 0
\(655\) 0.763716 12.3158i 0.0298409 0.481218i
\(656\) −6.07471 + 10.5217i −0.237178 + 0.410804i
\(657\) 0 0
\(658\) −16.5733 + 9.56862i −0.646096 + 0.373024i
\(659\) 33.9146 12.3439i 1.32113 0.480850i 0.417307 0.908766i \(-0.362974\pi\)
0.903819 + 0.427915i \(0.140752\pi\)
\(660\) 0 0
\(661\) 29.5546 24.7993i 1.14954 0.964580i 0.149833 0.988711i \(-0.452127\pi\)
0.999709 + 0.0241316i \(0.00768206\pi\)
\(662\) 22.2322 + 26.4953i 0.864079 + 1.02977i
\(663\) 0 0
\(664\) 31.0903 11.3160i 1.20654 0.439144i
\(665\) −18.7287 + 13.8340i −0.726267 + 0.536460i
\(666\) 0 0
\(667\) −28.7531 16.6006i −1.11332 0.642778i
\(668\) 2.46238 + 0.434185i 0.0952725 + 0.0167991i
\(669\) 0 0
\(670\) 9.32207 + 2.24637i 0.360143 + 0.0867847i
\(671\) −5.18394 29.3996i −0.200124 1.13496i
\(672\) 0 0
\(673\) 6.19702 7.38532i 0.238878 0.284683i −0.633265 0.773935i \(-0.718286\pi\)
0.872143 + 0.489252i \(0.162730\pi\)
\(674\) 17.6715 0.680682
\(675\) 0 0
\(676\) 4.94968 0.190372
\(677\) 15.8761 18.9204i 0.610167 0.727169i −0.369179 0.929358i \(-0.620361\pi\)
0.979346 + 0.202189i \(0.0648056\pi\)
\(678\) 0 0
\(679\) −2.86697 16.2594i −0.110024 0.623979i
\(680\) 35.3943 + 8.52907i 1.35731 + 0.327075i
\(681\) 0 0
\(682\) −8.30486 1.46437i −0.318010 0.0560737i
\(683\) 17.9981 + 10.3912i 0.688678 + 0.397609i 0.803117 0.595822i \(-0.203174\pi\)
−0.114438 + 0.993430i \(0.536507\pi\)
\(684\) 0 0
\(685\) −10.6848 + 7.89235i −0.408244 + 0.301551i
\(686\) −23.3593 + 8.50208i −0.891861 + 0.324611i
\(687\) 0 0
\(688\) 15.4549 + 18.4184i 0.589212 + 0.702195i
\(689\) −7.87048 + 6.60411i −0.299841 + 0.251597i
\(690\) 0 0
\(691\) −12.2565 + 4.46098i −0.466257 + 0.169704i −0.564456 0.825463i \(-0.690914\pi\)
0.0981988 + 0.995167i \(0.468692\pi\)
\(692\) 5.78643 3.34080i 0.219967 0.126998i
\(693\) 0 0
\(694\) −10.9387 + 18.9463i −0.415226 + 0.719193i
\(695\) 2.20473 35.5537i 0.0836300 1.34863i
\(696\) 0 0
\(697\) 7.77416 21.3593i 0.294467 0.809042i
\(698\) 29.8396 5.26153i 1.12945 0.199152i
\(699\) 0 0
\(700\) −2.41817 + 4.72616i −0.0913983 + 0.178632i
\(701\) −25.6062 −0.967135 −0.483567 0.875307i \(-0.660659\pi\)
−0.483567 + 0.875307i \(0.660659\pi\)
\(702\) 0 0
\(703\) 16.8402i 0.635141i
\(704\) 35.3263 + 29.6423i 1.33141 + 1.11719i
\(705\) 0 0
\(706\) −6.85846 38.8962i −0.258121 1.46388i
\(707\) −0.339609 + 0.933067i −0.0127723 + 0.0350916i
\(708\) 0 0
\(709\) −2.06567 + 11.7150i −0.0775777 + 0.439965i 0.921135 + 0.389243i \(0.127263\pi\)
−0.998713 + 0.0507221i \(0.983848\pi\)
\(710\) −0.0662458 0.0288711i −0.00248616 0.00108351i
\(711\) 0 0
\(712\) −12.2899 + 7.09558i −0.460584 + 0.265918i
\(713\) −2.30951 6.34531i −0.0864917 0.237634i
\(714\) 0 0
\(715\) −12.9926 12.3504i −0.485894 0.461877i
\(716\) −2.03368 + 1.70646i −0.0760021 + 0.0637733i
\(717\) 0 0
\(718\) −3.49908 9.61363i −0.130584 0.358777i
\(719\) −3.31070 5.73431i −0.123468 0.213854i 0.797665 0.603101i \(-0.206068\pi\)
−0.921133 + 0.389247i \(0.872735\pi\)
\(720\) 0 0
\(721\) 2.58068 4.46987i 0.0961096 0.166467i
\(722\) −2.35820 0.415814i −0.0877630 0.0154750i
\(723\) 0 0
\(724\) 4.45093 + 1.62000i 0.165417 + 0.0602070i
\(725\) −12.5660 29.7433i −0.466689 1.10464i
\(726\) 0 0
\(727\) 7.62291 9.08463i 0.282718 0.336930i −0.605932 0.795517i \(-0.707200\pi\)
0.888650 + 0.458586i \(0.151644\pi\)
\(728\) 10.7478i 0.398341i
\(729\) 0 0
\(730\) 15.9079 1.79886i 0.588778 0.0665787i
\(731\) −34.4587 28.9142i −1.27450 1.06943i
\(732\) 0 0
\(733\) −12.6872 + 2.23709i −0.468612 + 0.0826289i −0.402968 0.915214i \(-0.632021\pi\)
−0.0656441 + 0.997843i \(0.520910\pi\)
\(734\) −25.1976 9.17116i −0.930059 0.338514i
\(735\) 0 0
\(736\) −2.30374 + 13.0651i −0.0849169 + 0.481588i
\(737\) −15.5499 8.97771i −0.572786 0.330698i
\(738\) 0 0
\(739\) −12.2765 21.2636i −0.451600 0.782194i 0.546886 0.837207i \(-0.315813\pi\)
−0.998486 + 0.0550133i \(0.982480\pi\)
\(740\) 1.71034 + 3.43769i 0.0628734 + 0.126372i
\(741\) 0 0
\(742\) 12.0380 + 14.3463i 0.441928 + 0.526669i
\(743\) −26.5027 31.5847i −0.972291 1.15873i −0.987304 0.158844i \(-0.949223\pi\)
0.0150131 0.999887i \(-0.495221\pi\)
\(744\) 0 0
\(745\) −40.7674 + 20.2829i −1.49360 + 0.743107i
\(746\) 18.9194 + 32.7694i 0.692690 + 1.19977i
\(747\) 0 0
\(748\) −11.1672 6.44737i −0.408313 0.235739i
\(749\) −1.72593 + 9.78822i −0.0630640 + 0.357654i
\(750\) 0 0
\(751\) −11.6980 4.25772i −0.426866 0.155366i 0.119648 0.992816i \(-0.461823\pi\)
−0.546514 + 0.837450i \(0.684045\pi\)
\(752\) −19.0537 + 3.35968i −0.694817 + 0.122515i
\(753\) 0 0
\(754\) −9.47154 7.94756i −0.344933 0.289433i
\(755\) 4.26648 0.482451i 0.155273 0.0175582i
\(756\) 0 0
\(757\) 11.3137i 0.411203i 0.978636 + 0.205602i \(0.0659152\pi\)
−0.978636 + 0.205602i \(0.934085\pi\)
\(758\) −5.16630 + 6.15696i −0.187648 + 0.223631i
\(759\) 0 0
\(760\) −29.9694 + 8.84979i −1.08710 + 0.321016i
\(761\) 21.2994 + 7.75233i 0.772101 + 0.281022i 0.697875 0.716220i \(-0.254129\pi\)
0.0742262 + 0.997241i \(0.476351\pi\)
\(762\) 0 0
\(763\) −17.8234 3.14274i −0.645250 0.113775i
\(764\) −1.48302 + 2.56867i −0.0536539 + 0.0929313i
\(765\) 0 0
\(766\) −4.66529 8.08053i −0.168564 0.291961i
\(767\) −1.59500 4.38222i −0.0575920 0.158233i
\(768\) 0 0
\(769\) −11.6191 + 9.74955i −0.418994 + 0.351578i −0.827780 0.561052i \(-0.810397\pi\)
0.408786 + 0.912630i \(0.365952\pi\)
\(770\) −22.5122 + 23.6828i −0.811284 + 0.853469i
\(771\) 0 0
\(772\) −3.11204 8.55027i −0.112005 0.307731i
\(773\) −4.20823 + 2.42962i −0.151359 + 0.0873874i −0.573767 0.819019i \(-0.694518\pi\)
0.422407 + 0.906406i \(0.361185\pi\)
\(774\) 0 0
\(775\) 1.93061 6.27678i 0.0693496 0.225468i
\(776\) 3.84768 21.8213i 0.138124 0.783338i
\(777\) 0 0
\(778\) 3.34599 9.19303i 0.119960 0.329586i
\(779\) 3.38777 + 19.2130i 0.121379 + 0.688377i
\(780\) 0 0
\(781\) 0.103657 + 0.0869789i 0.00370916 + 0.00311235i
\(782\) 33.9383i 1.21363i
\(783\) 0 0
\(784\) −5.18676 −0.185241
\(785\) 15.7679 23.7791i 0.562782 0.848711i
\(786\) 0 0
\(787\) −4.82676 + 0.851088i −0.172055 + 0.0303380i −0.259012 0.965874i \(-0.583397\pi\)
0.0869567 + 0.996212i \(0.472286\pi\)
\(788\) 1.44345 3.96585i 0.0514209 0.141278i
\(789\) 0 0
\(790\) 45.7623 + 2.83777i 1.62815 + 0.100963i
\(791\) −17.9076 + 31.0170i −0.636723 + 1.10284i
\(792\) 0 0
\(793\) 7.70938 4.45101i 0.273768 0.158060i
\(794\) 1.88220 0.685063i 0.0667966 0.0243120i
\(795\) 0 0
\(796\) −3.60756 + 3.02710i −0.127866 + 0.107293i
\(797\) −35.8673 42.7450i −1.27049 1.51411i −0.752270 0.658855i \(-0.771041\pi\)
−0.518215 0.855250i \(-0.673403\pi\)
\(798\) 0 0
\(799\) 34.0142 12.3802i 1.20334 0.437978i
\(800\) −9.45087 + 8.78326i −0.334139 + 0.310535i
\(801\) 0 0
\(802\) −12.7814 7.37937i −0.451328 0.260575i
\(803\) −29.5223 5.20557i −1.04182 0.183701i
\(804\) 0 0
\(805\) −25.4360 6.12939i −0.896502 0.216033i
\(806\) −0.436667 2.47646i −0.0153809 0.0872296i
\(807\) 0 0
\(808\) −0.856584 + 1.02084i −0.0301345 + 0.0359129i
\(809\) −25.0205 −0.879673 −0.439837 0.898078i \(-0.644964\pi\)
−0.439837 + 0.898078i \(0.644964\pi\)
\(810\) 0 0
\(811\) 22.4129 0.787024 0.393512 0.919320i \(-0.371260\pi\)
0.393512 + 0.919320i \(0.371260\pi\)
\(812\) 4.40739 5.25253i 0.154669 0.184328i
\(813\) 0 0
\(814\) 4.10374 + 23.2735i 0.143836 + 0.815735i
\(815\) −12.9209 + 53.6198i −0.452600 + 1.87822i
\(816\) 0 0
\(817\) 38.0222 + 6.70435i 1.33023 + 0.234555i
\(818\) −12.2381 7.06565i −0.427894 0.247045i
\(819\) 0 0
\(820\) 2.64290 + 3.57799i 0.0922939 + 0.124949i
\(821\) 37.8576 13.7790i 1.32124 0.480892i 0.417384 0.908730i \(-0.362947\pi\)
0.903855 + 0.427838i \(0.140725\pi\)
\(822\) 0 0
\(823\) 8.96086 + 10.6791i 0.312356 + 0.372251i 0.899267 0.437400i \(-0.144101\pi\)
−0.586911 + 0.809651i \(0.699656\pi\)
\(824\) 5.30632 4.45253i 0.184854 0.155111i
\(825\) 0 0
\(826\) −7.98790 + 2.90736i −0.277935 + 0.101160i
\(827\) 30.3778 17.5386i 1.05634 0.609878i 0.131922 0.991260i \(-0.457885\pi\)
0.924418 + 0.381382i \(0.124552\pi\)
\(828\) 0 0
\(829\) −16.3803 + 28.3716i −0.568912 + 0.985385i 0.427762 + 0.903892i \(0.359302\pi\)
−0.996674 + 0.0814933i \(0.974031\pi\)
\(830\) −1.85641 + 29.9367i −0.0644369 + 1.03912i
\(831\) 0 0
\(832\) −4.70322 + 12.9220i −0.163055 + 0.447989i
\(833\) 9.55639 1.68505i 0.331109 0.0583835i
\(834\) 0 0
\(835\) −6.62292 + 9.98779i −0.229196 + 0.345642i
\(836\) 11.0676 0.382782
\(837\) 0 0
\(838\) 39.9932i 1.38154i
\(839\) 13.1790 + 11.0585i 0.454991 + 0.381783i 0.841284 0.540593i \(-0.181800\pi\)
−0.386293 + 0.922376i \(0.626245\pi\)
\(840\) 0 0
\(841\) 2.20580 + 12.5097i 0.0760621 + 0.431370i
\(842\) −5.71508 + 15.7021i −0.196955 + 0.541128i
\(843\) 0 0
\(844\) −0.289053 + 1.63930i −0.00994960 + 0.0564270i
\(845\) −9.47810 + 21.7479i −0.326057 + 0.748149i
\(846\) 0 0
\(847\) 31.3072 18.0752i 1.07573 0.621073i
\(848\) 6.47569 + 17.7918i 0.222376 + 0.610973i
\(849\) 0 0
\(850\) −19.9078 + 26.3259i −0.682833 + 0.902970i
\(851\) −14.4961 + 12.1636i −0.496919 + 0.416964i
\(852\) 0 0
\(853\) −16.6428 45.7258i −0.569840 1.56562i −0.804756 0.593606i \(-0.797704\pi\)
0.234916 0.972016i \(-0.424518\pi\)
\(854\) −8.11330 14.0526i −0.277631 0.480872i
\(855\) 0 0
\(856\) −6.66956 + 11.5520i −0.227961 + 0.394840i
\(857\) 9.48011 + 1.67160i 0.323835 + 0.0571008i 0.333202 0.942855i \(-0.391871\pi\)
−0.00936777 + 0.999956i \(0.502982\pi\)
\(858\) 0 0
\(859\) −30.1158 10.9613i −1.02754 0.373993i −0.227395 0.973803i \(-0.573021\pi\)
−0.800143 + 0.599809i \(0.795243\pi\)
\(860\) 8.44262 2.49306i 0.287891 0.0850125i
\(861\) 0 0
\(862\) −18.3459 + 21.8638i −0.624863 + 0.744682i
\(863\) 11.1232i 0.378637i −0.981916 0.189319i \(-0.939372\pi\)
0.981916 0.189319i \(-0.0606279\pi\)
\(864\) 0 0
\(865\) 3.59838 + 31.8217i 0.122348 + 1.08197i
\(866\) 27.2295 + 22.8482i 0.925295 + 0.776415i
\(867\) 0 0
\(868\) 1.37334 0.242158i 0.0466143 0.00821936i
\(869\) −80.6777 29.3643i −2.73680 0.996114i
\(870\) 0 0
\(871\) 0.929747 5.27286i 0.0315033 0.178664i
\(872\) −21.0351 12.1446i −0.712338 0.411268i
\(873\) 0 0
\(874\) −14.5647 25.2268i −0.492659 0.853310i
\(875\) −16.1352 19.6750i −0.545470 0.665138i
\(876\) 0 0
\(877\) −34.3783 40.9704i −1.16087 1.38347i −0.909563 0.415567i \(-0.863583\pi\)
−0.251309 0.967907i \(-0.580861\pi\)
\(878\) 2.13039 + 2.53890i 0.0718971 + 0.0856836i
\(879\) 0 0
\(880\) −29.5762 + 14.7149i −0.997013 + 0.496041i
\(881\) 12.0656 + 20.8982i 0.406500 + 0.704078i 0.994495 0.104787i \(-0.0334160\pi\)
−0.587995 + 0.808864i \(0.700083\pi\)
\(882\) 0 0
\(883\) −15.3713 8.87464i −0.517286 0.298655i 0.218537 0.975829i \(-0.429871\pi\)
−0.735824 + 0.677173i \(0.763205\pi\)
\(884\) 0.667701 3.78672i 0.0224572 0.127361i
\(885\) 0 0
\(886\) −3.24795 1.18216i −0.109117 0.0397154i
\(887\) 2.06559 0.364220i 0.0693559 0.0122293i −0.138863 0.990312i \(-0.544345\pi\)
0.208218 + 0.978082i \(0.433234\pi\)
\(888\) 0 0
\(889\) 5.84701 + 4.90623i 0.196103 + 0.164550i
\(890\) −1.44557 12.7837i −0.0484558 0.428511i
\(891\) 0 0
\(892\) 8.65966i 0.289947i
\(893\) −19.9703 + 23.7996i −0.668280 + 0.796425i
\(894\) 0 0
\(895\) −3.60355 12.2032i −0.120453 0.407909i
\(896\) 12.5171 + 4.55584i 0.418166 + 0.152200i
\(897\) 0 0
\(898\) −29.3074 5.16769i −0.978001 0.172448i
\(899\) −4.24080 + 7.34528i −0.141439 + 0.244979i
\(900\) 0 0
\(901\) −17.7113 30.6769i −0.590049 1.02200i
\(902\) 9.36392 + 25.7272i 0.311785 + 0.856621i
\(903\) 0 0
\(904\) −36.8212 + 30.8966i −1.22465 + 1.02761i
\(905\) −15.6410 + 16.4543i −0.519925 + 0.546960i
\(906\) 0 0
\(907\) 14.6217 + 40.1727i 0.485504 + 1.33391i 0.904713 + 0.426022i \(0.140085\pi\)
−0.419208 + 0.907890i \(0.637692\pi\)
\(908\) −9.94141 + 5.73967i −0.329917 + 0.190478i
\(909\) 0 0
\(910\) −8.93216 3.89280i −0.296098 0.129045i
\(911\) −3.61639 + 20.5096i −0.119816 + 0.679513i 0.864436 + 0.502743i \(0.167676\pi\)
−0.984252 + 0.176770i \(0.943435\pi\)
\(912\) 0 0
\(913\) 19.2095 52.7776i 0.635741 1.74668i
\(914\) 6.60204 + 37.4420i 0.218376 + 1.23847i
\(915\) 0 0
\(916\) −0.729227 0.611894i −0.0240943 0.0202175i
\(917\) 12.5591i 0.414739i
\(918\) 0 0
\(919\) 14.9586 0.493438 0.246719 0.969087i \(-0.420648\pi\)
0.246719 + 0.969087i \(0.420648\pi\)
\(920\) −29.2647 19.4055i −0.964829 0.639780i
\(921\) 0 0
\(922\) 13.2312 2.33302i 0.435747 0.0768340i
\(923\) −0.0138006 + 0.0379168i −0.000454252 + 0.00124805i
\(924\) 0 0
\(925\) −18.3796 + 0.932081i −0.604318 + 0.0306467i
\(926\) 20.1693 34.9343i 0.662804 1.14801i
\(927\) 0 0
\(928\) 14.4312 8.33188i 0.473729 0.273507i
\(929\) −25.6422 + 9.33300i −0.841294 + 0.306206i −0.726486 0.687182i \(-0.758848\pi\)
−0.114808 + 0.993388i \(0.536625\pi\)
\(930\) 0 0
\(931\) −6.38026 + 5.35367i −0.209105 + 0.175460i
\(932\) 2.60241 + 3.10144i 0.0852449 + 0.101591i
\(933\) 0 0
\(934\) −15.9542 + 5.80685i −0.522037 + 0.190006i
\(935\) 49.7124 36.7203i 1.62577 1.20088i
\(936\) 0 0
\(937\) 47.0967 + 27.1913i 1.53858 + 0.888300i 0.998922 + 0.0464165i \(0.0147801\pi\)
0.539659 + 0.841884i \(0.318553\pi\)
\(938\) −9.61136 1.69474i −0.313822 0.0553353i
\(939\) 0 0
\(940\) −1.65948 + 6.88660i −0.0541264 + 0.224616i
\(941\) 8.21935 + 46.6142i 0.267943 + 1.51958i 0.760522 + 0.649313i \(0.224943\pi\)
−0.492579 + 0.870268i \(0.663946\pi\)
\(942\) 0 0
\(943\) −14.0916 + 16.7937i −0.458885 + 0.546878i
\(944\) −8.59400 −0.279711
\(945\) 0 0
\(946\) 54.1812 1.76158
\(947\) −26.0639 + 31.0617i −0.846962 + 1.00937i 0.152815 + 0.988255i \(0.451166\pi\)
−0.999777 + 0.0211155i \(0.993278\pi\)
\(948\) 0 0
\(949\) −1.55227 8.80337i −0.0503889 0.285769i
\(950\) 3.49996 28.1119i 0.113554 0.912070i
\(951\) 0 0
\(952\) −36.4927 6.43465i −1.18273 0.208548i
\(953\) −23.2862 13.4443i −0.754315 0.435504i 0.0729359 0.997337i \(-0.476763\pi\)
−0.827251 + 0.561833i \(0.810096\pi\)
\(954\) 0 0
\(955\) −8.44638 11.4348i −0.273319 0.370023i
\(956\) 1.65361 0.601865i 0.0534816 0.0194657i
\(957\) 0 0
\(958\) 9.40297 + 11.2060i 0.303796 + 0.362050i
\(959\) 10.3570 8.69054i 0.334444 0.280632i
\(960\) 0 0
\(961\) 27.5095 10.0126i 0.887403 0.322988i
\(962\) −6.10295 + 3.52354i −0.196767 + 0.113603i
\(963\) 0 0
\(964\) −0.132088 + 0.228784i −0.00425428 + 0.00736864i
\(965\) 43.5273 + 2.69918i 1.40119 + 0.0868896i
\(966\) 0 0
\(967\) −13.0453 + 35.8418i −0.419510 + 1.15259i 0.532474 + 0.846446i \(0.321262\pi\)
−0.951984 + 0.306147i \(0.900960\pi\)
\(968\) 47.7794 8.42480i 1.53569 0.270783i
\(969\) 0 0
\(970\) 16.7413 + 11.1012i 0.537532 + 0.356438i
\(971\) 52.8853 1.69717 0.848585 0.529059i \(-0.177455\pi\)
0.848585 + 0.529059i \(0.177455\pi\)
\(972\) 0 0
\(973\) 36.2562i 1.16232i
\(974\) −29.9846 25.1600i −0.960767 0.806179i
\(975\) 0 0
\(976\) −2.84870 16.1558i −0.0911846 0.517134i
\(977\) −7.16089 + 19.6744i −0.229097 + 0.629439i −0.999972 0.00754795i \(-0.997597\pi\)
0.770874 + 0.636987i \(0.219820\pi\)
\(978\) 0 0
\(979\) −4.18324 + 23.7243i −0.133697 + 0.758233i
\(980\) −0.758704 + 1.74087i −0.0242359 + 0.0556102i
\(981\) 0 0
\(982\) 17.5749 10.1469i 0.560838 0.323800i
\(983\) 12.7694 + 35.0835i 0.407279 + 1.11899i 0.958615 + 0.284707i \(0.0918963\pi\)
−0.551335 + 0.834284i \(0.685881\pi\)
\(984\) 0 0
\(985\) 14.6611 + 13.9364i 0.467141 + 0.444051i
\(986\) 32.6553 27.4011i 1.03996 0.872628i
\(987\) 0 0
\(988\) 1.12877 + 3.10127i 0.0359110 + 0.0986646i
\(989\) 21.6923 + 37.5721i 0.689774 + 1.19472i
\(990\) 0 0
\(991\) 17.5105 30.3291i 0.556240 0.963436i −0.441566 0.897229i \(-0.645577\pi\)
0.997806 0.0662071i \(-0.0210898\pi\)
\(992\) 3.33763 + 0.588514i 0.105970 + 0.0186853i
\(993\) 0 0
\(994\) 0.0691147 + 0.0251557i 0.00219218 + 0.000797890i
\(995\) −6.39236 21.6474i −0.202652 0.686270i
\(996\) 0 0
\(997\) 30.6391 36.5143i 0.970351 1.15642i −0.0173159 0.999850i \(-0.505512\pi\)
0.987667 0.156569i \(-0.0500435\pi\)
\(998\) 49.2436i 1.55878i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.p.a.289.11 96
3.2 odd 2 135.2.p.a.124.6 yes 96
5.4 even 2 inner 405.2.p.a.289.6 96
15.2 even 4 675.2.l.h.151.6 96
15.8 even 4 675.2.l.h.151.11 96
15.14 odd 2 135.2.p.a.124.11 yes 96
27.5 odd 18 135.2.p.a.49.11 yes 96
27.22 even 9 inner 405.2.p.a.199.6 96
135.32 even 36 675.2.l.h.76.6 96
135.49 even 18 inner 405.2.p.a.199.11 96
135.59 odd 18 135.2.p.a.49.6 96
135.113 even 36 675.2.l.h.76.11 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.6 96 135.59 odd 18
135.2.p.a.49.11 yes 96 27.5 odd 18
135.2.p.a.124.6 yes 96 3.2 odd 2
135.2.p.a.124.11 yes 96 15.14 odd 2
405.2.p.a.199.6 96 27.22 even 9 inner
405.2.p.a.199.11 96 135.49 even 18 inner
405.2.p.a.289.6 96 5.4 even 2 inner
405.2.p.a.289.11 96 1.1 even 1 trivial
675.2.l.h.76.6 96 135.32 even 36
675.2.l.h.76.11 96 135.113 even 36
675.2.l.h.151.6 96 15.2 even 4
675.2.l.h.151.11 96 15.8 even 4