L(s) = 1 | + (0.376 − 1.36i)2-s + (−1.82 − 1.82i)3-s + (−1.71 − 1.02i)4-s + (−3.18 + 1.80i)6-s + 4.50i·7-s + (−2.04 + 1.95i)8-s + 3.68i·9-s + (−1.64 + 1.64i)11-s + (1.25 + 5.01i)12-s + (−1.51 − 1.51i)13-s + (6.14 + 1.69i)14-s + (1.88 + 3.52i)16-s − 1.45·17-s + (5.01 + 1.38i)18-s + (−2.67 − 2.67i)19-s + ⋯ |
L(s) = 1 | + (0.266 − 0.963i)2-s + (−1.05 − 1.05i)3-s + (−0.857 − 0.513i)4-s + (−1.29 + 0.735i)6-s + 1.70i·7-s + (−0.723 + 0.689i)8-s + 1.22i·9-s + (−0.494 + 0.494i)11-s + (0.363 + 1.44i)12-s + (−0.421 − 0.421i)13-s + (1.64 + 0.454i)14-s + (0.472 + 0.881i)16-s − 0.353·17-s + (1.18 + 0.326i)18-s + (−0.614 − 0.614i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.633 - 0.773i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.633 - 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.224288 + 0.106192i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.224288 + 0.106192i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.376 + 1.36i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1.82 + 1.82i)T + 3iT^{2} \) |
| 7 | \( 1 - 4.50iT - 7T^{2} \) |
| 11 | \( 1 + (1.64 - 1.64i)T - 11iT^{2} \) |
| 13 | \( 1 + (1.51 + 1.51i)T + 13iT^{2} \) |
| 17 | \( 1 + 1.45T + 17T^{2} \) |
| 19 | \( 1 + (2.67 + 2.67i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.37iT - 23T^{2} \) |
| 29 | \( 1 + (-0.924 - 0.924i)T + 29iT^{2} \) |
| 31 | \( 1 + 7.20T + 31T^{2} \) |
| 37 | \( 1 + (-5.21 + 5.21i)T - 37iT^{2} \) |
| 41 | \( 1 - 6.41iT - 41T^{2} \) |
| 43 | \( 1 + (7.65 - 7.65i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.51T + 47T^{2} \) |
| 53 | \( 1 + (1.50 - 1.50i)T - 53iT^{2} \) |
| 59 | \( 1 + (5.31 - 5.31i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.02 + 1.02i)T + 61iT^{2} \) |
| 67 | \( 1 + (5.22 + 5.22i)T + 67iT^{2} \) |
| 71 | \( 1 - 1.92iT - 71T^{2} \) |
| 73 | \( 1 + 1.39iT - 73T^{2} \) |
| 79 | \( 1 - 5.06T + 79T^{2} \) |
| 83 | \( 1 + (-2.44 - 2.44i)T + 83iT^{2} \) |
| 89 | \( 1 + 9.36iT - 89T^{2} \) |
| 97 | \( 1 + 18.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48492925275502448049342717220, −10.97696227496907068149038220026, −9.704117280558180069409079597937, −8.831653395913919970795109823935, −7.67946657075397446604720897083, −6.32540575375630701193985951078, −5.56980876565329715445271060245, −4.79968599711063442381455597965, −2.78628769247216247978431154356, −1.80879564688642905274259567118,
0.16501695708597058253017260124, 3.70912024964294075148274077504, 4.39321456683732643750881517954, 5.25264512120426545523857879256, 6.32349267533710628079197548170, 7.17229514400609593212478549348, 8.213028347367974098957258131083, 9.467395808870675386987919794142, 10.35622998364215188053384008557, 10.86232957688240405589924018164