L(s) = 1 | + 1.41·2-s − 3-s + 1.00·4-s + 1.41·5-s − 1.41·6-s − 7-s + 9-s + 2.00·10-s − 1.00·12-s − 1.41·14-s − 1.41·15-s − 0.999·16-s − 1.41·17-s + 1.41·18-s + 19-s + 1.41·20-s + 21-s + 1.00·25-s − 27-s − 1.00·28-s − 1.41·29-s − 2.00·30-s − 1.41·32-s − 2.00·34-s − 1.41·35-s + 1.00·36-s + 1.41·38-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 3-s + 1.00·4-s + 1.41·5-s − 1.41·6-s − 7-s + 9-s + 2.00·10-s − 1.00·12-s − 1.41·14-s − 1.41·15-s − 0.999·16-s − 1.41·17-s + 1.41·18-s + 19-s + 1.41·20-s + 21-s + 1.00·25-s − 27-s − 1.00·28-s − 1.41·29-s − 2.00·30-s − 1.41·32-s − 2.00·34-s − 1.41·35-s + 1.00·36-s + 1.41·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.324631479\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.324631479\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 7 | \( 1 + T \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 - 1.41T + T^{2} \) |
| 5 | \( 1 - 1.41T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + 1.41T + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70882218034599812755458983043, −10.83148625236504410596301219625, −9.775176422830961415080156144109, −9.182575828780399421253333943894, −7.04373082961640695260063651005, −6.34187280635941636950486778730, −5.69032604357031132874129767075, −4.91791576780185149061613378859, −3.65462569966984243568578921039, −2.20793167252447025357418879335,
2.20793167252447025357418879335, 3.65462569966984243568578921039, 4.91791576780185149061613378859, 5.69032604357031132874129767075, 6.34187280635941636950486778730, 7.04373082961640695260063651005, 9.182575828780399421253333943894, 9.775176422830961415080156144109, 10.83148625236504410596301219625, 11.70882218034599812755458983043