Properties

Label 399.1.h.c.398.2
Level $399$
Weight $1$
Character 399.398
Self dual yes
Analytic conductor $0.199$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -399
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,1,Mod(398,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.398"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 399.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.199126940041\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.53067.1
Artin image: $D_8$
Artin field: Galois closure of 8.0.190563597.3

Embedding invariants

Embedding label 398.2
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 399.398

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.41421 q^{5} -1.41421 q^{6} -1.00000 q^{7} +1.00000 q^{9} +2.00000 q^{10} -1.00000 q^{12} -1.41421 q^{14} -1.41421 q^{15} -1.00000 q^{16} -1.41421 q^{17} +1.41421 q^{18} +1.00000 q^{19} +1.41421 q^{20} +1.00000 q^{21} +1.00000 q^{25} -1.00000 q^{27} -1.00000 q^{28} -1.41421 q^{29} -2.00000 q^{30} -1.41421 q^{32} -2.00000 q^{34} -1.41421 q^{35} +1.00000 q^{36} +1.41421 q^{38} +1.41421 q^{42} +1.41421 q^{45} -1.41421 q^{47} +1.00000 q^{48} +1.00000 q^{49} +1.41421 q^{50} +1.41421 q^{51} +1.41421 q^{53} -1.41421 q^{54} -1.00000 q^{57} -2.00000 q^{58} -1.41421 q^{60} -1.00000 q^{63} -1.00000 q^{64} -1.41421 q^{68} -2.00000 q^{70} +1.41421 q^{71} -1.00000 q^{75} +1.00000 q^{76} -1.41421 q^{80} +1.00000 q^{81} +1.41421 q^{83} +1.00000 q^{84} -2.00000 q^{85} +1.41421 q^{87} +2.00000 q^{90} -2.00000 q^{94} +1.41421 q^{95} +1.41421 q^{96} +2.00000 q^{97} +1.41421 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} - 2 q^{7} + 2 q^{9} + 4 q^{10} - 2 q^{12} - 2 q^{16} + 2 q^{19} + 2 q^{21} + 2 q^{25} - 2 q^{27} - 2 q^{28} - 4 q^{30} - 4 q^{34} + 2 q^{36} + 2 q^{48} + 2 q^{49} - 2 q^{57} - 4 q^{58}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) −1.00000 −1.00000
\(4\) 1.00000 1.00000
\(5\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(6\) −1.41421 −1.41421
\(7\) −1.00000 −1.00000
\(8\) 0 0
\(9\) 1.00000 1.00000
\(10\) 2.00000 2.00000
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −1.00000 −1.00000
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −1.41421 −1.41421
\(15\) −1.41421 −1.41421
\(16\) −1.00000 −1.00000
\(17\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) 1.41421 1.41421
\(19\) 1.00000 1.00000
\(20\) 1.41421 1.41421
\(21\) 1.00000 1.00000
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) −1.00000 −1.00000
\(29\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(30\) −2.00000 −2.00000
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.41421 −1.41421
\(33\) 0 0
\(34\) −2.00000 −2.00000
\(35\) −1.41421 −1.41421
\(36\) 1.00000 1.00000
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.41421 1.41421
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.41421 1.41421
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 1.41421 1.41421
\(46\) 0 0
\(47\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 1.00000 1.00000
\(49\) 1.00000 1.00000
\(50\) 1.41421 1.41421
\(51\) 1.41421 1.41421
\(52\) 0 0
\(53\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) −1.41421 −1.41421
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −1.00000
\(58\) −2.00000 −2.00000
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −1.41421 −1.41421
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −1.00000 −1.00000
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −1.41421 −1.41421
\(69\) 0 0
\(70\) −2.00000 −2.00000
\(71\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −1.00000 −1.00000
\(76\) 1.00000 1.00000
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −1.41421 −1.41421
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 1.00000 1.00000
\(85\) −2.00000 −2.00000
\(86\) 0 0
\(87\) 1.41421 1.41421
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 2.00000 2.00000
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −2.00000 −2.00000
\(95\) 1.41421 1.41421
\(96\) 1.41421 1.41421
\(97\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(98\) 1.41421 1.41421
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(102\) 2.00000 2.00000
\(103\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(104\) 0 0
\(105\) 1.41421 1.41421
\(106\) 2.00000 2.00000
\(107\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) −1.00000 −1.00000
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000 1.00000
\(113\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) −1.41421 −1.41421
\(115\) 0 0
\(116\) −1.41421 −1.41421
\(117\) 0 0
\(118\) 0 0
\(119\) 1.41421 1.41421
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −1.41421 −1.41421
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) −1.00000 −1.00000
\(134\) 0 0
\(135\) −1.41421 −1.41421
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −1.41421 −1.41421
\(141\) 1.41421 1.41421
\(142\) 2.00000 2.00000
\(143\) 0 0
\(144\) −1.00000 −1.00000
\(145\) −2.00000 −2.00000
\(146\) 0 0
\(147\) −1.00000 −1.00000
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −1.41421 −1.41421
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −1.41421 −1.41421
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) −1.41421 −1.41421
\(160\) −2.00000 −2.00000
\(161\) 0 0
\(162\) 1.41421 1.41421
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 2.00000 2.00000
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −1.00000 −1.00000
\(170\) −2.82843 −2.82843
\(171\) 1.00000 1.00000
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 2.00000 2.00000
\(175\) −1.00000 −1.00000
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(180\) 1.41421 1.41421
\(181\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −1.41421 −1.41421
\(189\) 1.00000 1.00000
\(190\) 2.00000 2.00000
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 1.00000 1.00000
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 2.82843 2.82843
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2.00000 −2.00000
\(203\) 1.41421 1.41421
\(204\) 1.41421 1.41421
\(205\) 0 0
\(206\) 2.82843 2.82843
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 2.00000 2.00000
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 1.41421 1.41421
\(213\) −1.41421 −1.41421
\(214\) −2.00000 −2.00000
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 1.41421 1.41421
\(225\) 1.00000 1.00000
\(226\) −2.00000 −2.00000
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) −1.00000 −1.00000
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) −2.00000 −2.00000
\(236\) 0 0
\(237\) 0 0
\(238\) 2.00000 2.00000
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 1.41421 1.41421
\(241\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(242\) 1.41421 1.41421
\(243\) −1.00000 −1.00000
\(244\) 0 0
\(245\) 1.41421 1.41421
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −1.41421 −1.41421
\(250\) 0 0
\(251\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(252\) −1.00000 −1.00000
\(253\) 0 0
\(254\) 0 0
\(255\) 2.00000 2.00000
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.41421 −1.41421
\(262\) 2.00000 2.00000
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 2.00000 2.00000
\(266\) −1.41421 −1.41421
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −2.00000 −2.00000
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 1.41421 1.41421
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(282\) 2.00000 2.00000
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 1.41421 1.41421
\(285\) −1.41421 −1.41421
\(286\) 0 0
\(287\) 0 0
\(288\) −1.41421 −1.41421
\(289\) 1.00000 1.00000
\(290\) −2.82843 −2.82843
\(291\) −2.00000 −2.00000
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −1.41421 −1.41421
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −1.00000 −1.00000
\(301\) 0 0
\(302\) 0 0
\(303\) 1.41421 1.41421
\(304\) −1.00000 −1.00000
\(305\) 0 0
\(306\) −2.00000 −2.00000
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −2.00000 −2.00000
\(310\) 0 0
\(311\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −1.41421 −1.41421
\(316\) 0 0
\(317\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) −2.00000 −2.00000
\(319\) 0 0
\(320\) −1.41421 −1.41421
\(321\) 1.41421 1.41421
\(322\) 0 0
\(323\) −1.41421 −1.41421
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.41421 1.41421
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 1.41421 1.41421
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −1.00000 −1.00000
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −1.41421 −1.41421
\(339\) 1.41421 1.41421
\(340\) −2.00000 −2.00000
\(341\) 0 0
\(342\) 1.41421 1.41421
\(343\) −1.00000 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 1.41421 1.41421
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −1.41421 −1.41421
\(351\) 0 0
\(352\) 0 0
\(353\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 2.00000 2.00000
\(356\) 0 0
\(357\) −1.41421 −1.41421
\(358\) −2.00000 −2.00000
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) −2.82843 −2.82843
\(363\) −1.00000 −1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.41421 −1.41421
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 1.41421 1.41421
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 1.41421 1.41421
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 2.00000 2.00000
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1.41421 −1.41421
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 1.00000 1.00000
\(400\) −1.00000 −1.00000
\(401\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.41421 −1.41421
\(405\) 1.41421 1.41421
\(406\) 2.00000 2.00000
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.00000 2.00000
\(413\) 0 0
\(414\) 0 0
\(415\) 2.00000 2.00000
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 1.41421 1.41421
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −1.41421 −1.41421
\(424\) 0 0
\(425\) −1.41421 −1.41421
\(426\) −2.00000 −2.00000
\(427\) 0 0
\(428\) −1.41421 −1.41421
\(429\) 0 0
\(430\) 0 0
\(431\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(432\) 1.00000 1.00000
\(433\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 2.00000 2.00000
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 1.00000 1.00000
\(449\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(450\) 1.41421 1.41421
\(451\) 0 0
\(452\) −1.41421 −1.41421
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 1.41421 1.41421
\(460\) 0 0
\(461\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(462\) 0 0
\(463\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(464\) 1.41421 1.41421
\(465\) 0 0
\(466\) 0 0
\(467\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.82843 −2.82843
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.00000 1.00000
\(476\) 1.41421 1.41421
\(477\) 1.41421 1.41421
\(478\) 0 0
\(479\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(480\) 2.00000 2.00000
\(481\) 0 0
\(482\) −2.82843 −2.82843
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 2.82843 2.82843
\(486\) −1.41421 −1.41421
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 2.00000 2.00000
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 2.00000 2.00000
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.41421 −1.41421
\(498\) −2.00000 −2.00000
\(499\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.00000 −2.00000
\(503\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) −2.00000 −2.00000
\(506\) 0 0
\(507\) 1.00000 1.00000
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 2.82843 2.82843
\(511\) 0 0
\(512\) 1.41421 1.41421
\(513\) −1.00000 −1.00000
\(514\) 0 0
\(515\) 2.82843 2.82843
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −2.00000 −2.00000
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 1.41421 1.41421
\(525\) 1.00000 1.00000
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 2.82843 2.82843
\(531\) 0 0
\(532\) −1.00000 −1.00000
\(533\) 0 0
\(534\) 0 0
\(535\) −2.00000 −2.00000
\(536\) 0 0
\(537\) 1.41421 1.41421
\(538\) 0 0
\(539\) 0 0
\(540\) −1.41421 −1.41421
\(541\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 2.00000 2.00000
\(544\) 2.00000 2.00000
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.41421 −1.41421
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.41421 1.41421
\(561\) 0 0
\(562\) 2.00000 2.00000
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 1.41421 1.41421
\(565\) −2.00000 −2.00000
\(566\) 0 0
\(567\) −1.00000 −1.00000
\(568\) 0 0
\(569\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(570\) −2.00000 −2.00000
\(571\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −1.00000
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 1.41421 1.41421
\(579\) 0 0
\(580\) −2.00000 −2.00000
\(581\) −1.41421 −1.41421
\(582\) −2.82843 −2.82843
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) −1.00000 −1.00000
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 2.00000 2.00000
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(600\) 0 0
\(601\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.41421 1.41421
\(606\) 2.00000 2.00000
\(607\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(608\) −1.41421 −1.41421
\(609\) −1.41421 −1.41421
\(610\) 0 0
\(611\) 0 0
\(612\) −1.41421 −1.41421
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) −2.82843 −2.82843
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2.00000 2.00000
\(623\) 0 0
\(624\) 0 0
\(625\) −1.00000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −2.00000 −2.00000
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −2.00000 −2.00000
\(635\) 0 0
\(636\) −1.41421 −1.41421
\(637\) 0 0
\(638\) 0 0
\(639\) 1.41421 1.41421
\(640\) 0 0
\(641\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(642\) 2.00000 2.00000
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.00000 −2.00000
\(647\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 2.00000 2.00000
\(656\) 0 0
\(657\) 0 0
\(658\) 2.00000 2.00000
\(659\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.41421 −1.41421
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −1.41421 −1.41421
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −1.00000 −1.00000
\(676\) −1.00000 −1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 2.00000 2.00000
\(679\) −2.00000 −2.00000
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 1.00000 1.00000
\(685\) 0 0
\(686\) −1.41421 −1.41421
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.00000 −1.00000
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 2.00000 2.00000
\(706\) 2.00000 2.00000
\(707\) 1.41421 1.41421
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 2.82843 2.82843
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) −2.00000 −2.00000
\(715\) 0 0
\(716\) −1.41421 −1.41421
\(717\) 0 0
\(718\) 0 0
\(719\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(720\) −1.41421 −1.41421
\(721\) −2.00000 −2.00000
\(722\) 1.41421 1.41421
\(723\) 2.00000 2.00000
\(724\) −2.00000 −2.00000
\(725\) −1.41421 −1.41421
\(726\) −1.41421 −1.41421
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −1.41421 −1.41421
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.00000 −2.00000
\(743\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.41421 1.41421
\(748\) 0 0
\(749\) 1.41421 1.41421
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 1.41421 1.41421
\(753\) 1.41421 1.41421
\(754\) 0 0
\(755\) 0 0
\(756\) 1.00000 1.00000
\(757\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.00000 −2.00000
\(766\) 0 0
\(767\) 0 0
\(768\) −1.00000 −1.00000
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.41421 1.41421
\(784\) −1.00000 −1.00000
\(785\) 0 0
\(786\) −2.00000 −2.00000
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.41421 1.41421
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −2.00000 −2.00000
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 1.41421 1.41421
\(799\) 2.00000 2.00000
\(800\) −1.41421 −1.41421
\(801\) 0 0
\(802\) 2.00000 2.00000
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 2.00000 2.00000
\(811\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(812\) 1.41421 1.41421
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −1.41421 −1.41421
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(830\) 2.82843 2.82843
\(831\) 0 0
\(832\) 0 0
\(833\) −1.41421 −1.41421
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −2.00000 −2.00000
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) −1.41421 −1.41421
\(844\) 0 0
\(845\) −1.41421 −1.41421
\(846\) −2.00000 −2.00000
\(847\) −1.00000 −1.00000
\(848\) −1.41421 −1.41421
\(849\) 0 0
\(850\) −2.00000 −2.00000
\(851\) 0 0
\(852\) −1.41421 −1.41421
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 1.41421 1.41421
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.00000 −2.00000
\(863\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 1.41421 1.41421
\(865\) 0 0
\(866\) −2.82843 −2.82843
\(867\) −1.00000 −1.00000
\(868\) 0 0
\(869\) 0 0
\(870\) 2.82843 2.82843
\(871\) 0 0
\(872\) 0 0
\(873\) 2.00000 2.00000
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(882\) 1.41421 1.41421
\(883\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.41421 −1.41421
\(894\) 0 0
\(895\) −2.00000 −2.00000
\(896\) 0 0
\(897\) 0 0
\(898\) 2.00000 2.00000
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) −2.00000 −2.00000
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.82843 −2.82843
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) −1.41421 −1.41421
\(910\) 0 0
\(911\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(912\) 1.00000 1.00000
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.41421 −1.41421
\(918\) 2.00000 2.00000
\(919\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2.00000 −2.00000
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 2.82843 2.82843
\(927\) 2.00000 2.00000
\(928\) 2.00000 2.00000
\(929\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(930\) 0 0
\(931\) 1.00000 1.00000
\(932\) 0 0
\(933\) −1.41421 −1.41421
\(934\) 2.00000 2.00000
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2.00000 −2.00000
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 1.41421 1.41421
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1.41421 1.41421
\(951\) 1.41421 1.41421
\(952\) 0 0
\(953\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 2.00000 2.00000
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −2.00000 −2.00000
\(959\) 0 0
\(960\) 1.41421 1.41421
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) −1.41421 −1.41421
\(964\) −2.00000 −2.00000
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 1.41421 1.41421
\(970\) 4.00000 4.00000
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −1.00000 −1.00000
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.41421 1.41421
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2.82843 2.82843
\(987\) −1.41421 −1.41421
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −2.00000 −2.00000
\(995\) 0 0
\(996\) −1.41421 −1.41421
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 2.82843 2.82843
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.1.h.c.398.2 yes 2
3.2 odd 2 inner 399.1.h.c.398.1 2
7.2 even 3 2793.1.s.d.227.1 4
7.3 odd 6 2793.1.s.c.1538.1 4
7.4 even 3 2793.1.s.d.1538.1 4
7.5 odd 6 2793.1.s.c.227.1 4
7.6 odd 2 399.1.h.d.398.2 yes 2
19.18 odd 2 399.1.h.d.398.1 yes 2
21.2 odd 6 2793.1.s.d.227.2 4
21.5 even 6 2793.1.s.c.227.2 4
21.11 odd 6 2793.1.s.d.1538.2 4
21.17 even 6 2793.1.s.c.1538.2 4
21.20 even 2 399.1.h.d.398.1 yes 2
57.56 even 2 399.1.h.d.398.2 yes 2
133.18 odd 6 2793.1.s.c.1538.2 4
133.37 odd 6 2793.1.s.c.227.2 4
133.75 even 6 2793.1.s.d.227.2 4
133.94 even 6 2793.1.s.d.1538.2 4
133.132 even 2 inner 399.1.h.c.398.1 2
399.170 even 6 2793.1.s.c.227.1 4
399.227 odd 6 2793.1.s.d.1538.1 4
399.284 even 6 2793.1.s.c.1538.1 4
399.341 odd 6 2793.1.s.d.227.1 4
399.398 odd 2 CM 399.1.h.c.398.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.1.h.c.398.1 2 3.2 odd 2 inner
399.1.h.c.398.1 2 133.132 even 2 inner
399.1.h.c.398.2 yes 2 1.1 even 1 trivial
399.1.h.c.398.2 yes 2 399.398 odd 2 CM
399.1.h.d.398.1 yes 2 19.18 odd 2
399.1.h.d.398.1 yes 2 21.20 even 2
399.1.h.d.398.2 yes 2 7.6 odd 2
399.1.h.d.398.2 yes 2 57.56 even 2
2793.1.s.c.227.1 4 7.5 odd 6
2793.1.s.c.227.1 4 399.170 even 6
2793.1.s.c.227.2 4 21.5 even 6
2793.1.s.c.227.2 4 133.37 odd 6
2793.1.s.c.1538.1 4 7.3 odd 6
2793.1.s.c.1538.1 4 399.284 even 6
2793.1.s.c.1538.2 4 21.17 even 6
2793.1.s.c.1538.2 4 133.18 odd 6
2793.1.s.d.227.1 4 7.2 even 3
2793.1.s.d.227.1 4 399.341 odd 6
2793.1.s.d.227.2 4 21.2 odd 6
2793.1.s.d.227.2 4 133.75 even 6
2793.1.s.d.1538.1 4 7.4 even 3
2793.1.s.d.1538.1 4 399.227 odd 6
2793.1.s.d.1538.2 4 21.11 odd 6
2793.1.s.d.1538.2 4 133.94 even 6