L(s) = 1 | + (4.27 − 7.40i)3-s + (−9.27 − 16.0i)5-s + (−23.0 − 39.9i)9-s + (−31.6 + 54.8i)11-s − 16.7·13-s − 158.·15-s + (20.6 − 35.7i)17-s + (−19.5 − 33.9i)19-s + (10.9 + 18.8i)23-s + (−109. + 189. i)25-s − 163.·27-s + 138.·29-s + (47.8 − 82.8i)31-s + (270. + 468. i)33-s + (−88.2 − 152. i)37-s + ⋯ |
L(s) = 1 | + (0.822 − 1.42i)3-s + (−0.829 − 1.43i)5-s + (−0.853 − 1.47i)9-s + (−0.867 + 1.50i)11-s − 0.357·13-s − 2.72·15-s + (0.294 − 0.510i)17-s + (−0.236 − 0.409i)19-s + (0.0988 + 0.171i)23-s + (−0.876 + 1.51i)25-s − 1.16·27-s + 0.884·29-s + (0.277 − 0.480i)31-s + (1.42 + 2.47i)33-s + (−0.392 − 0.679i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9418070212\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9418070212\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-4.27 + 7.40i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (9.27 + 16.0i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (31.6 - 54.8i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 16.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-20.6 + 35.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (19.5 + 33.9i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-10.9 - 18.8i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 138.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-47.8 + 82.8i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (88.2 + 152. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 407.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 100.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-72.1 - 124. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-204. + 354. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-0.426 + 0.737i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-203. - 352. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-4.69 + 8.13i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 944.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (43.1 - 74.6i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (281. + 488. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 969.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (752. + 1.30e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 956.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07939948977765443674193940770, −9.023678240790652318459350209076, −8.286837962544351937257456219627, −7.55963242722847808595326282139, −6.96457013750317730283328492855, −5.27623167171161002252570236704, −4.33354916615478539059416982160, −2.70673851432570035477312020839, −1.54773632445159211183274262944, −0.27896322077059292581206016119,
2.82159276028537658453531702698, 3.27291697695442013131509125824, 4.25414114760691592391605586840, 5.56997650052164356165308970750, 6.87293005418972963442414619027, 8.153433352697179960408800539855, 8.497460209255130355768742597114, 9.950171919046361201530308529004, 10.52920172551105518823306517634, 11.02527564897174476099331826123