L(s) = 1 | + (−3.27 + 5.67i)3-s + (−1.72 − 2.98i)5-s + (−7.95 − 13.7i)9-s + (13.6 − 23.6i)11-s + 58.7·13-s + 22.5·15-s + (−24.6 + 42.6i)17-s + (78.5 + 136. i)19-s + (41.0 + 71.1i)23-s + (56.5 − 97.9i)25-s − 72.7·27-s − 194.·29-s + (−57.8 + 100. i)31-s + (89.4 + 154. i)33-s + (−163. − 283. i)37-s + ⋯ |
L(s) = 1 | + (−0.630 + 1.09i)3-s + (−0.154 − 0.267i)5-s + (−0.294 − 0.510i)9-s + (0.374 − 0.648i)11-s + 1.25·13-s + 0.388·15-s + (−0.351 + 0.609i)17-s + (0.948 + 1.64i)19-s + (0.372 + 0.645i)23-s + (0.452 − 0.783i)25-s − 0.518·27-s − 1.24·29-s + (−0.335 + 0.580i)31-s + (0.471 + 0.816i)33-s + (−0.727 − 1.26i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.243516511\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.243516511\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (3.27 - 5.67i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (1.72 + 2.98i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-13.6 + 23.6i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 58.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + (24.6 - 42.6i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-78.5 - 136. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-41.0 - 71.1i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 194.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (57.8 - 100. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (163. + 283. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 136.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 311.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-177. - 308. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (338. - 586. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-98.5 + 170. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (30.5 + 52.8i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (508. - 881. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 279.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (314. - 545. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (10.1 + 17.4i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 260.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-454. - 788. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 100.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97114314323811628589599918619, −10.54164685559355826748142122610, −9.407213868712845976193899505853, −8.672754768667856250894058043085, −7.55287363335577231181683806240, −6.01762098693751720998503818622, −5.52414590073052368299060727894, −4.15252697017809086025306564062, −3.52646038245398167033135519179, −1.32488413754763664614822599262,
0.51044154890310628630668984637, 1.73936515948009783983402204108, 3.28889026516358943425843435245, 4.78801573495647768437565734280, 5.94437513584983046003321916670, 6.97543362889899955033211965105, 7.28694373467596359143036535519, 8.708001278951378759796370927721, 9.556705338441136949252620468584, 11.01490793572365672752793460126