Properties

Label 2-392-56.19-c1-0-4
Degree $2$
Conductor $392$
Sign $-0.379 + 0.925i$
Analytic cond. $3.13013$
Root an. cond. $1.76921$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 1.22i)2-s + (−2.26 + 1.30i)3-s + (−0.999 + 1.73i)4-s + (−1.60 + 2.77i)5-s + (−3.20 − 1.84i)6-s − 2.82·8-s + (1.91 − 3.31i)9-s − 4.52·10-s + (1 + 1.73i)11-s − 5.22i·12-s + 5.07·13-s − 8.36i·15-s + (−2.00 − 3.46i)16-s + (0.274 − 0.158i)17-s + 5.41·18-s + (−4.13 − 2.38i)19-s + ⋯
L(s)  = 1  + (0.499 + 0.866i)2-s + (−1.30 + 0.754i)3-s + (−0.499 + 0.866i)4-s + (−0.715 + 1.23i)5-s + (−1.30 − 0.754i)6-s − 0.999·8-s + (0.638 − 1.10i)9-s − 1.43·10-s + (0.301 + 0.522i)11-s − 1.50i·12-s + 1.40·13-s − 2.15i·15-s + (−0.500 − 0.866i)16-s + (0.0665 − 0.0384i)17-s + 1.27·18-s + (−0.949 − 0.548i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.379 + 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.379 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $-0.379 + 0.925i$
Analytic conductor: \(3.13013\)
Root analytic conductor: \(1.76921\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{392} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 392,\ (\ :1/2),\ -0.379 + 0.925i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.362633 - 0.540568i\)
\(L(\frac12)\) \(\approx\) \(0.362633 - 0.540568i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 - 1.22i)T \)
7 \( 1 \)
good3 \( 1 + (2.26 - 1.30i)T + (1.5 - 2.59i)T^{2} \)
5 \( 1 + (1.60 - 2.77i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 - 5.07T + 13T^{2} \)
17 \( 1 + (-0.274 + 0.158i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (4.13 + 2.38i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.24 + 0.717i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 - 9.37iT - 29T^{2} \)
31 \( 1 + (-1.32 - 2.29i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-2.12 - 1.22i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + 4.46iT - 41T^{2} \)
43 \( 1 + 8.82T + 43T^{2} \)
47 \( 1 + (2.65 - 4.59i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (3 - 1.73i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (2.26 - 1.30i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (-1.98 + 3.44i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (6 + 10.3i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + (1.21 - 0.699i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-10.2 - 5.91i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 - 8.47iT - 83T^{2} \)
89 \( 1 + (-8.55 - 4.93i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 - 3.82iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.80643446276496218782396388286, −11.00602988831562221415591905241, −10.50813095271216634376094956283, −9.144477717941501702700158123377, −7.996530271072272889205015214215, −6.67612566834377180821041311199, −6.47911737620303681372802578273, −5.19924043013710560363652534136, −4.20776111107111844015763204837, −3.33173709225538002804303779675, 0.45902328050941650411881204748, 1.54996099286322208854724778594, 3.78324925026089151581192836263, 4.67674669675786952208463342722, 5.83666631606761238454733757331, 6.33227052050020267981260487457, 8.056308002184940761612175845306, 8.796808839928412939204728436638, 10.11974219375906999640542372983, 11.21963077844046796366739703155

Graph of the $Z$-function along the critical line