L(s) = 1 | + (0.707 − 1.22i)2-s + (−2.26 − 1.30i)3-s + (−0.999 − 1.73i)4-s + (−1.60 − 2.77i)5-s + (−3.20 + 1.84i)6-s − 2.82·8-s + (1.91 + 3.31i)9-s − 4.52·10-s + (1 − 1.73i)11-s + 5.22i·12-s + 5.07·13-s + 8.36i·15-s + (−2.00 + 3.46i)16-s + (0.274 + 0.158i)17-s + 5.41·18-s + (−4.13 + 2.38i)19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.866i)2-s + (−1.30 − 0.754i)3-s + (−0.499 − 0.866i)4-s + (−0.715 − 1.23i)5-s + (−1.30 + 0.754i)6-s − 0.999·8-s + (0.638 + 1.10i)9-s − 1.43·10-s + (0.301 − 0.522i)11-s + 1.50i·12-s + 1.40·13-s + 2.15i·15-s + (−0.500 + 0.866i)16-s + (0.0665 + 0.0384i)17-s + 1.27·18-s + (−0.949 + 0.548i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.379 - 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.379 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.362633 + 0.540568i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.362633 + 0.540568i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 1.22i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (2.26 + 1.30i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.60 + 2.77i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.07T + 13T^{2} \) |
| 17 | \( 1 + (-0.274 - 0.158i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.13 - 2.38i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.24 - 0.717i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 9.37iT - 29T^{2} \) |
| 31 | \( 1 + (-1.32 + 2.29i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.12 + 1.22i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.46iT - 41T^{2} \) |
| 43 | \( 1 + 8.82T + 43T^{2} \) |
| 47 | \( 1 + (2.65 + 4.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3 + 1.73i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.26 + 1.30i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.98 - 3.44i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6 - 10.3i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (1.21 + 0.699i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-10.2 + 5.91i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 8.47iT - 83T^{2} \) |
| 89 | \( 1 + (-8.55 + 4.93i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3.82iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21963077844046796366739703155, −10.11974219375906999640542372983, −8.796808839928412939204728436638, −8.056308002184940761612175845306, −6.33227052050020267981260487457, −5.83666631606761238454733757331, −4.67674669675786952208463342722, −3.78324925026089151581192836263, −1.54996099286322208854724778594, −0.45902328050941650411881204748,
3.33173709225538002804303779675, 4.20776111107111844015763204837, 5.19924043013710560363652534136, 6.47911737620303681372802578273, 6.67612566834377180821041311199, 7.996530271072272889205015214215, 9.144477717941501702700158123377, 10.50813095271216634376094956283, 11.00602988831562221415591905241, 11.80643446276496218782396388286