Properties

Label 4-39e2-1.1-c12e2-0-0
Degree $4$
Conductor $1521$
Sign $1$
Analytic cond. $1270.62$
Root an. cond. $5.97040$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.45e3·3-s − 5.03e3·4-s + 1.59e6·9-s + 7.33e6·12-s − 9.65e6·13-s + 8.55e6·16-s + 4.74e8·25-s − 1.54e9·27-s − 8.02e9·36-s + 1.40e10·39-s − 2.11e10·43-s − 1.24e10·48-s + 2.76e10·49-s + 4.85e10·52-s − 1.78e11·61-s + 4.13e10·64-s − 6.91e11·75-s − 3.43e11·79-s + 1.41e12·81-s − 2.38e12·100-s − 4.75e11·103-s + 7.79e12·108-s − 1.53e13·117-s + 4.06e12·121-s + 127-s + 3.08e13·129-s + 131-s + ⋯
L(s)  = 1  − 2·3-s − 1.22·4-s + 3·9-s + 2.45·12-s − 2·13-s + 0.509·16-s + 1.94·25-s − 4·27-s − 3.68·36-s + 4·39-s − 3.35·43-s − 1.01·48-s + 2·49-s + 2.45·52-s − 3.46·61-s + 0.602·64-s − 3.88·75-s − 1.41·79-s + 5·81-s − 2.38·100-s − 0.398·103-s + 4.91·108-s − 6·117-s + 1.29·121-s + 6.70·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+6)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1270.62\)
Root analytic conductor: \(5.97040\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1521,\ (\ :6, 6),\ 1)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(0.1376768218\)
\(L(\frac12)\) \(\approx\) \(0.1376768218\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p^{6} T )^{2} \)
13$C_1$ \( ( 1 + p^{6} T )^{2} \)
good2$C_2^2$ \( 1 + 5033 T^{2} + p^{24} T^{4} \)
5$C_2^2$ \( 1 - 474278686 T^{2} + p^{24} T^{4} \)
7$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
11$C_2^2$ \( 1 - 4067560976542 T^{2} + p^{24} T^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
41$C_2^2$ \( 1 - 45027555279429176062 T^{2} + p^{24} T^{4} \)
43$C_2$ \( ( 1 + 10591541998 T + p^{12} T^{2} )^{2} \)
47$C_2^2$ \( 1 + \)\(14\!\cdots\!18\)\( T^{2} + p^{24} T^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
59$C_2^2$ \( 1 + \)\(26\!\cdots\!38\)\( T^{2} + p^{24} T^{4} \)
61$C_2$ \( ( 1 + 89162579378 T + p^{12} T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
71$C_2^2$ \( 1 + \)\(22\!\cdots\!18\)\( T^{2} + p^{24} T^{4} \)
73$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
79$C_2$ \( ( 1 + 171789411458 T + p^{12} T^{2} )^{2} \)
83$C_2^2$ \( 1 + \)\(18\!\cdots\!78\)\( T^{2} + p^{24} T^{4} \)
89$C_2^2$ \( 1 + \)\(36\!\cdots\!58\)\( T^{2} + p^{24} T^{4} \)
97$C_1$$\times$$C_1$ \( ( 1 - p^{6} T )^{2}( 1 + p^{6} T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55165250464170730532729874081, −13.19260843090129948748249773381, −12.30731221141754498718317247144, −12.30557312710696607150863961716, −11.58787572983079751219724105560, −10.71857870467492197434295863191, −10.30254682976884212002871742971, −9.703673497826344424594144012646, −9.173218576079113786700177962736, −8.214998648690614704227033067217, −7.09233273161677456149724519199, −6.99562119105029505232655167511, −5.90448407559121244661533446905, −5.21377518113540410575297574537, −4.61546186157517552424234062174, −4.52928592003884603046815540479, −3.17786752919831671496443168804, −1.84050388713390287415492802443, −0.908149463970558112039143827185, −0.17031175159339689931415991313, 0.17031175159339689931415991313, 0.908149463970558112039143827185, 1.84050388713390287415492802443, 3.17786752919831671496443168804, 4.52928592003884603046815540479, 4.61546186157517552424234062174, 5.21377518113540410575297574537, 5.90448407559121244661533446905, 6.99562119105029505232655167511, 7.09233273161677456149724519199, 8.214998648690614704227033067217, 9.173218576079113786700177962736, 9.703673497826344424594144012646, 10.30254682976884212002871742971, 10.71857870467492197434295863191, 11.58787572983079751219724105560, 12.30557312710696607150863961716, 12.30731221141754498718317247144, 13.19260843090129948748249773381, 13.55165250464170730532729874081

Graph of the $Z$-function along the critical line