Properties

Label 2-3800-5.4-c1-0-58
Degree $2$
Conductor $3800$
Sign $-0.894 + 0.447i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.68i·3-s + 3.18i·7-s − 4.18·9-s − 0.681i·13-s + 1.18i·17-s − 19-s + 8.55·21-s − 2.17i·23-s + 3.18i·27-s − 2.81·29-s + 6.37·31-s − 7.87i·37-s − 1.82·39-s + 0.983·41-s + 1.36i·43-s + ⋯
L(s)  = 1  − 1.54i·3-s + 1.20i·7-s − 1.39·9-s − 0.188i·13-s + 0.288i·17-s − 0.229·19-s + 1.86·21-s − 0.453i·23-s + 0.613i·27-s − 0.521·29-s + 1.14·31-s − 1.29i·37-s − 0.292·39-s + 0.153·41-s + 0.207i·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.215897408\)
\(L(\frac12)\) \(\approx\) \(1.215897408\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 2.68iT - 3T^{2} \)
7 \( 1 - 3.18iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 0.681iT - 13T^{2} \)
17 \( 1 - 1.18iT - 17T^{2} \)
23 \( 1 + 2.17iT - 23T^{2} \)
29 \( 1 + 2.81T + 29T^{2} \)
31 \( 1 - 6.37T + 31T^{2} \)
37 \( 1 + 7.87iT - 37T^{2} \)
41 \( 1 - 0.983T + 41T^{2} \)
43 \( 1 - 1.36iT - 43T^{2} \)
47 \( 1 + 11.7iT - 47T^{2} \)
53 \( 1 + 1.69iT - 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 - 7.36T + 61T^{2} \)
67 \( 1 + 7.02iT - 67T^{2} \)
71 \( 1 + 12.7T + 71T^{2} \)
73 \( 1 + 5.53iT - 73T^{2} \)
79 \( 1 + 5.36T + 79T^{2} \)
83 \( 1 - 2.37iT - 83T^{2} \)
89 \( 1 + 3.01T + 89T^{2} \)
97 \( 1 + 4.88iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.221816399255326661475320467941, −7.40892776960227057789642078789, −6.74615932107751762551100395850, −5.98658062194261384487469943741, −5.56164227805018773157424575510, −4.43685415299385165283372326625, −3.15188261646090351558425730707, −2.33068654746527686165677783329, −1.68738148471675665015981328022, −0.37173644232868418529930824677, 1.19105542465414532992862668459, 2.77814777577673496579588190349, 3.57495112561867474205829030122, 4.34110647764074058205566265299, 4.71402143406213401837962130829, 5.67991062778095768005943445613, 6.55555989541343719961267021208, 7.41607900878032059559042503366, 8.143234769137201269677742368950, 9.042962221810729308856415128900

Graph of the $Z$-function along the critical line