L(s) = 1 | + 2·3-s − 2·4-s − 5-s + 3·9-s − 4·12-s − 2·15-s + 16-s + 2·20-s − 8·23-s + 2·27-s + 31-s − 6·36-s − 37-s − 3·45-s + 2·47-s + 2·48-s + 49-s − 53-s − 59-s + 4·60-s + 4·67-s − 16·69-s − 71-s − 80-s + 81-s − 8·89-s + 16·92-s + ⋯ |
L(s) = 1 | + 2·3-s − 2·4-s − 5-s + 3·9-s − 4·12-s − 2·15-s + 16-s + 2·20-s − 8·23-s + 2·27-s + 31-s − 6·36-s − 37-s − 3·45-s + 2·47-s + 2·48-s + 49-s − 53-s − 59-s + 4·60-s + 4·67-s − 16·69-s − 71-s − 80-s + 81-s − 8·89-s + 16·92-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{16} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{16} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4881383264\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4881383264\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \) |
good | 2 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 3 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 5 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 7 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 13 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 17 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 19 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 23 | \( ( 1 + T + T^{2} )^{8} \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 37 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 41 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 43 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 47 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 53 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 59 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 67 | \( ( 1 - T )^{8}( 1 + T + T^{2} )^{4} \) |
| 71 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 73 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 79 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 83 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 89 | \( ( 1 + T + T^{2} )^{8} \) |
| 97 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.79244575890294885649085035464, −3.70101198779758158421521011756, −3.64062441556594628724047384355, −3.45583317974514092603061796921, −3.45331126731630055104690021057, −3.00106587818834205886353685672, −2.99496642360906314788643105769, −2.99270770314566419653468302778, −2.91688530048907883431183305843, −2.73598876267275563455070078296, −2.59181887723298591982832435422, −2.26716022863973879611642635499, −2.19955911842880908395419802020, −2.17388965700750755464670042247, −2.05363775456119123464521411160, −2.01089658659652668290448328770, −1.86434702310761181607270883931, −1.75157148273194082432640173550, −1.62196605316283088497664440956, −1.33501351012798137293025396240, −1.30636452244790290189864725437, −0.998936326970323634171668766914, −0.77500199628040740302149751819, −0.31838513727361728912449178630, −0.31568980590413065131335840406,
0.31568980590413065131335840406, 0.31838513727361728912449178630, 0.77500199628040740302149751819, 0.998936326970323634171668766914, 1.30636452244790290189864725437, 1.33501351012798137293025396240, 1.62196605316283088497664440956, 1.75157148273194082432640173550, 1.86434702310761181607270883931, 2.01089658659652668290448328770, 2.05363775456119123464521411160, 2.17388965700750755464670042247, 2.19955911842880908395419802020, 2.26716022863973879611642635499, 2.59181887723298591982832435422, 2.73598876267275563455070078296, 2.91688530048907883431183305843, 2.99270770314566419653468302778, 2.99496642360906314788643105769, 3.00106587818834205886353685672, 3.45331126731630055104690021057, 3.45583317974514092603061796921, 3.64062441556594628724047384355, 3.70101198779758158421521011756, 3.79244575890294885649085035464
Plot not available for L-functions of degree greater than 10.