Properties

Label 8-3675e4-1.1-c0e4-0-0
Degree $8$
Conductor $1.824\times 10^{14}$
Sign $1$
Analytic cond. $11.3150$
Root an. cond. $1.35427$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s − 2·16-s + 3·81-s + 8·109-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 4·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯
L(s)  = 1  − 2·9-s − 2·16-s + 3·81-s + 8·109-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 4·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(11.3150\)
Root analytic conductor: \(1.35427\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7298669652\)
\(L(\frac12)\) \(\approx\) \(0.7298669652\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
7 \( 1 \)
good2$C_2^2$ \( ( 1 + T^{4} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
13$C_2$ \( ( 1 + T^{2} )^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
19$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + T^{4} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_2^2$ \( ( 1 + T^{4} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.09560513501837712300660610237, −6.05327040200752239837873592710, −6.01315399648944472947344957014, −5.71697972405204197144825293321, −5.50770477048211774475876571931, −5.11073602558918721954878506660, −4.91941276626149735131528971085, −4.86299519466543540237280624927, −4.73911736337185153559786748594, −4.51571736393598425069584229811, −4.20988410176231920015862645776, −4.03948349753073161448589278225, −3.68044538549805161037194842991, −3.43786074872914155191521368924, −3.29225496567429635124775422546, −3.13190296037312137611406742292, −2.99808214562133670811835669967, −2.44302775431214962710785042219, −2.28217696657116332585095021222, −2.25159638984118446757458155563, −2.06566702077787859214345016524, −1.69013764664760250571454696779, −1.18484180527247312075975038603, −0.822940456763734131056439174555, −0.37246897971375030824601561153, 0.37246897971375030824601561153, 0.822940456763734131056439174555, 1.18484180527247312075975038603, 1.69013764664760250571454696779, 2.06566702077787859214345016524, 2.25159638984118446757458155563, 2.28217696657116332585095021222, 2.44302775431214962710785042219, 2.99808214562133670811835669967, 3.13190296037312137611406742292, 3.29225496567429635124775422546, 3.43786074872914155191521368924, 3.68044538549805161037194842991, 4.03948349753073161448589278225, 4.20988410176231920015862645776, 4.51571736393598425069584229811, 4.73911736337185153559786748594, 4.86299519466543540237280624927, 4.91941276626149735131528971085, 5.11073602558918721954878506660, 5.50770477048211774475876571931, 5.71697972405204197144825293321, 6.01315399648944472947344957014, 6.05327040200752239837873592710, 6.09560513501837712300660610237

Graph of the $Z$-function along the critical line