Properties

Label 3675.1.c.f
Level $3675$
Weight $1$
Character orbit 3675.c
Analytic conductor $1.834$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3675,1,Mod(1226,3675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3675.1226"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,-4,0,0,0,0,0,0,-4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83406392143\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 735)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.15435.1
Artin image: $C_4\times D_8$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{32} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{8}^{3} - \zeta_{8}) q^{2} + \zeta_{8}^{2} q^{3} - q^{4} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{6} - q^{9} - \zeta_{8}^{2} q^{12} - q^{16} + (\zeta_{8}^{3} + \zeta_{8}) q^{18} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{19} + \cdots + (\zeta_{8}^{3} - \zeta_{8}) q^{96} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{9} - 4 q^{16} + 4 q^{36} - 8 q^{46} + 4 q^{64} + 4 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3675\mathbb{Z}\right)^\times\).

\(n\) \(1177\) \(1226\) \(2551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1226.1
−0.707107 + 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
1.41421i 1.00000i −1.00000 0 −1.41421 0 0 −1.00000 0
1226.2 1.41421i 1.00000i −1.00000 0 1.41421 0 0 −1.00000 0
1226.3 1.41421i 1.00000i −1.00000 0 1.41421 0 0 −1.00000 0
1226.4 1.41421i 1.00000i −1.00000 0 −1.41421 0 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner
35.c odd 2 1 inner
105.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3675.1.c.f 4
3.b odd 2 1 inner 3675.1.c.f 4
5.b even 2 1 inner 3675.1.c.f 4
5.c odd 4 1 735.1.f.c 2
5.c odd 4 1 735.1.f.d yes 2
7.b odd 2 1 inner 3675.1.c.f 4
7.c even 3 2 3675.1.u.f 8
7.d odd 6 2 3675.1.u.f 8
15.d odd 2 1 CM 3675.1.c.f 4
15.e even 4 1 735.1.f.c 2
15.e even 4 1 735.1.f.d yes 2
21.c even 2 1 inner 3675.1.c.f 4
21.g even 6 2 3675.1.u.f 8
21.h odd 6 2 3675.1.u.f 8
35.c odd 2 1 inner 3675.1.c.f 4
35.f even 4 1 735.1.f.c 2
35.f even 4 1 735.1.f.d yes 2
35.i odd 6 2 3675.1.u.f 8
35.j even 6 2 3675.1.u.f 8
35.k even 12 2 735.1.o.c 4
35.k even 12 2 735.1.o.d 4
35.l odd 12 2 735.1.o.c 4
35.l odd 12 2 735.1.o.d 4
105.g even 2 1 inner 3675.1.c.f 4
105.k odd 4 1 735.1.f.c 2
105.k odd 4 1 735.1.f.d yes 2
105.o odd 6 2 3675.1.u.f 8
105.p even 6 2 3675.1.u.f 8
105.w odd 12 2 735.1.o.c 4
105.w odd 12 2 735.1.o.d 4
105.x even 12 2 735.1.o.c 4
105.x even 12 2 735.1.o.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.1.f.c 2 5.c odd 4 1
735.1.f.c 2 15.e even 4 1
735.1.f.c 2 35.f even 4 1
735.1.f.c 2 105.k odd 4 1
735.1.f.d yes 2 5.c odd 4 1
735.1.f.d yes 2 15.e even 4 1
735.1.f.d yes 2 35.f even 4 1
735.1.f.d yes 2 105.k odd 4 1
735.1.o.c 4 35.k even 12 2
735.1.o.c 4 35.l odd 12 2
735.1.o.c 4 105.w odd 12 2
735.1.o.c 4 105.x even 12 2
735.1.o.d 4 35.k even 12 2
735.1.o.d 4 35.l odd 12 2
735.1.o.d 4 105.w odd 12 2
735.1.o.d 4 105.x even 12 2
3675.1.c.f 4 1.a even 1 1 trivial
3675.1.c.f 4 3.b odd 2 1 inner
3675.1.c.f 4 5.b even 2 1 inner
3675.1.c.f 4 7.b odd 2 1 inner
3675.1.c.f 4 15.d odd 2 1 CM
3675.1.c.f 4 21.c even 2 1 inner
3675.1.c.f 4 35.c odd 2 1 inner
3675.1.c.f 4 105.g even 2 1 inner
3675.1.u.f 8 7.c even 3 2
3675.1.u.f 8 7.d odd 6 2
3675.1.u.f 8 21.g even 6 2
3675.1.u.f 8 21.h odd 6 2
3675.1.u.f 8 35.i odd 6 2
3675.1.u.f 8 35.j even 6 2
3675.1.u.f 8 105.o odd 6 2
3675.1.u.f 8 105.p even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3675, [\chi])\):

\( T_{2}^{2} + 2 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{19}^{2} - 2 \) Copy content Toggle raw display
\( T_{37} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less