L(s) = 1 | + i·3-s − 2i·7-s − 9-s − 2·13-s + i·19-s + 2·21-s − 25-s − i·27-s − 2·37-s − 2i·39-s − 3·49-s − 57-s + 2i·63-s − 2i·67-s − 2·73-s + ⋯ |
L(s) = 1 | + i·3-s − 2i·7-s − 9-s − 2·13-s + i·19-s + 2·21-s − 25-s − i·27-s − 2·37-s − 2i·39-s − 3·49-s − 57-s + 2i·63-s − 2i·67-s − 2·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2654996290\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2654996290\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 + T^{2} \) |
| 7 | \( 1 + 2iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 2T + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + 2T + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 2iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 2T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.397616613300510958810890144980, −7.57112107805982369931097124450, −7.20666483295733535601620308319, −6.18285426648292667816863850567, −5.14202871952432946335314408730, −4.57580098256248156559917601791, −3.85374591264172394393880472894, −3.18836422865853217243472192008, −1.85718657363563900003094784587, −0.13665952458515185193401194843,
1.88363155899400568683412130301, 2.44727600902175491758915747791, 3.11186288382397028605164306127, 4.74078109174625150880051876284, 5.39625025398198863432201029833, 5.93511621922291648509305409728, 6.91014600374975325299612411113, 7.40526699913754225991920644846, 8.332688429815625284195337675794, 8.866996967088085816216547360174