Properties

Label 2.3648.8t11.c
Dimension $2$
Group $Q_8:C_2$
Conductor $3648$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(3648\)\(\medspace = 2^{6} \cdot 3 \cdot 19 \)
Artin number field: Galois closure of 8.0.1916338176.4
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{-38})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ \( 6 + 34\cdot 109 + 6\cdot 109^{2} + 3\cdot 109^{3} + 20\cdot 109^{4} + 39\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 23 + 54\cdot 109 + 17\cdot 109^{2} + 99\cdot 109^{3} + 103\cdot 109^{4} + 45\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 30 + 100\cdot 109 + 30\cdot 109^{2} + 31\cdot 109^{3} + 91\cdot 109^{4} + 61\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 45 + 5\cdot 109 + 83\cdot 109^{2} + 83\cdot 109^{3} + 15\cdot 109^{4} + 38\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 64 + 103\cdot 109 + 25\cdot 109^{2} + 25\cdot 109^{3} + 93\cdot 109^{4} + 70\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 79 + 8\cdot 109 + 78\cdot 109^{2} + 77\cdot 109^{3} + 17\cdot 109^{4} + 47\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 86 + 54\cdot 109 + 91\cdot 109^{2} + 9\cdot 109^{3} + 5\cdot 109^{4} + 63\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 103 + 74\cdot 109 + 102\cdot 109^{2} + 105\cdot 109^{3} + 88\cdot 109^{4} + 69\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(3,6)(4,5)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$ $0$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$ $0$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$ $0$
$2$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.