L(s) = 1 | − 2·8-s + 3·17-s + 3·19-s − 6·53-s + 64-s + 12·107-s − 6·109-s − 125-s + 127-s + 131-s − 6·136-s + 137-s + 139-s + 149-s + 151-s − 6·152-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 2·8-s + 3·17-s + 3·19-s − 6·53-s + 64-s + 12·107-s − 6·109-s − 125-s + 127-s + 131-s − 6·136-s + 137-s + 139-s + 149-s + 151-s − 6·152-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{36} \cdot 5^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{36} \cdot 5^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.468018813\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.468018813\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + T^{3} + T^{6} \) |
good | 2 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 7 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 11 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 13 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 17 | \( ( 1 - T )^{6}( 1 + T + T^{2} )^{3} \) |
| 19 | \( ( 1 - T )^{6}( 1 + T + T^{2} )^{3} \) |
| 23 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 29 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 31 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 37 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 41 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 43 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 47 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 53 | \( ( 1 + T + T^{2} )^{6} \) |
| 59 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 61 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 67 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 71 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 73 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 79 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 83 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 89 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 97 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.69484339025276265151916051614, −4.50076985377928656162454540485, −4.43340708462142710077882539718, −4.12012722682835764452730413348, −4.10432322931937498003178646044, −3.57099887046083271141538820372, −3.48699743339343711447598302716, −3.43627472177431147534552245088, −3.41266129674094107368156179787, −3.37762823176824652585141770970, −3.34804170001894437915050768054, −2.98791396666301419606232888925, −2.94774433366296085061769486561, −2.77051637224199330263393336784, −2.64299498112681813761917726903, −2.41455057050641743911004809742, −2.07099682339411435032142427070, −2.06688156982795190444875373392, −1.76840038390502273896940685863, −1.54330409116017070381441533477, −1.27545315398917443475644337942, −1.23515980323002493233666220642, −1.10804703631823423267509270960, −0.74330842508823620032946020676, −0.39039799677121155815876909475,
0.39039799677121155815876909475, 0.74330842508823620032946020676, 1.10804703631823423267509270960, 1.23515980323002493233666220642, 1.27545315398917443475644337942, 1.54330409116017070381441533477, 1.76840038390502273896940685863, 2.06688156982795190444875373392, 2.07099682339411435032142427070, 2.41455057050641743911004809742, 2.64299498112681813761917726903, 2.77051637224199330263393336784, 2.94774433366296085061769486561, 2.98791396666301419606232888925, 3.34804170001894437915050768054, 3.37762823176824652585141770970, 3.41266129674094107368156179787, 3.43627472177431147534552245088, 3.48699743339343711447598302716, 3.57099887046083271141538820372, 4.10432322931937498003178646044, 4.12012722682835764452730413348, 4.43340708462142710077882539718, 4.50076985377928656162454540485, 4.69484339025276265151916051614
Plot not available for L-functions of degree greater than 10.