Properties

Label 2-6e2-4.3-c16-0-13
Degree $2$
Conductor $36$
Sign $1$
Analytic cond. $58.4368$
Root an. cond. $7.64439$
Motivic weight $16$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 256·2-s + 6.55e4·4-s − 3.29e5·5-s − 1.67e7·8-s + 8.43e7·10-s − 1.63e9·13-s + 4.29e9·16-s + 9.93e9·17-s − 2.16e10·20-s − 4.39e10·25-s + 4.17e11·26-s − 9.81e11·29-s − 1.09e12·32-s − 2.54e12·34-s − 6.16e12·37-s + 5.53e12·40-s + 3.16e12·41-s + 3.32e13·49-s + 1.12e13·50-s − 1.06e14·52-s + 3.19e13·53-s + 2.51e14·58-s + 4.59e13·61-s + 2.81e14·64-s + 5.37e14·65-s + 6.51e14·68-s + 1.38e15·73-s + ⋯
L(s)  = 1  − 2-s + 4-s − 0.843·5-s − 8-s + 0.843·10-s − 1.99·13-s + 16-s + 1.42·17-s − 0.843·20-s − 0.287·25-s + 1.99·26-s − 1.96·29-s − 32-s − 1.42·34-s − 1.75·37-s + 0.843·40-s + 0.396·41-s + 49-s + 0.287·50-s − 1.99·52-s + 0.513·53-s + 1.96·58-s + 0.239·61-s + 64-s + 1.68·65-s + 1.42·68-s + 1.71·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(17-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s+8) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36\)    =    \(2^{2} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(58.4368\)
Root analytic conductor: \(7.64439\)
Motivic weight: \(16\)
Rational: yes
Arithmetic: yes
Character: $\chi_{36} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 36,\ (\ :8),\ 1)\)

Particular Values

\(L(\frac{17}{2})\) \(\approx\) \(0.6146850728\)
\(L(\frac12)\) \(\approx\) \(0.6146850728\)
\(L(9)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{8} T \)
3 \( 1 \)
good5 \( 1 + 329666 T + p^{16} T^{2} \)
7 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
11 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
13 \( 1 + 1631232958 T + p^{16} T^{2} \)
17 \( 1 - 9937278718 T + p^{16} T^{2} \)
19 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
23 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
29 \( 1 + 981515008322 T + p^{16} T^{2} \)
31 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
37 \( 1 + 6167627357758 T + p^{16} T^{2} \)
41 \( 1 - 3168324620158 T + p^{16} T^{2} \)
43 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
47 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
53 \( 1 - 31962705295678 T + p^{16} T^{2} \)
59 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
61 \( 1 - 45990056420162 T + p^{16} T^{2} \)
67 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
71 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
73 \( 1 - 1381042818437762 T + p^{16} T^{2} \)
79 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
83 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
89 \( 1 - 6957151819021438 T + p^{16} T^{2} \)
97 \( 1 - 14385701036152322 T + p^{16} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41383291864221722526867009603, −11.72495969361213974357527610974, −10.33686191403028841180694581420, −9.322527895642277904452969807312, −7.82394053707413942107252954254, −7.21906029882322626964171707383, −5.39186411672546395342592269537, −3.52200050178642465308797174810, −2.08974116434938036454140535465, −0.47351017362565416962240245692, 0.47351017362565416962240245692, 2.08974116434938036454140535465, 3.52200050178642465308797174810, 5.39186411672546395342592269537, 7.21906029882322626964171707383, 7.82394053707413942107252954254, 9.322527895642277904452969807312, 10.33686191403028841180694581420, 11.72495969361213974357527610974, 12.41383291864221722526867009603

Graph of the $Z$-function along the critical line