Properties

Label 2-3520-44.43-c1-0-7
Degree $2$
Conductor $3520$
Sign $-0.648 - 0.761i$
Analytic cond. $28.1073$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.792i·3-s + 5-s − 4.70·7-s + 2.37·9-s + (−2.15 − 2.52i)11-s − 1.01i·13-s + 0.792i·15-s − 2.71i·17-s + 2.15·19-s − 3.72i·21-s + 5.04i·23-s + 25-s + 4.25i·27-s − 9.15i·29-s + 9.30i·31-s + ⋯
L(s)  = 1  + 0.457i·3-s + 0.447·5-s − 1.77·7-s + 0.790·9-s + (−0.648 − 0.761i)11-s − 0.280i·13-s + 0.204i·15-s − 0.658i·17-s + 0.493·19-s − 0.813i·21-s + 1.05i·23-s + 0.200·25-s + 0.819i·27-s − 1.70i·29-s + 1.67i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.648 - 0.761i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.648 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3520\)    =    \(2^{6} \cdot 5 \cdot 11\)
Sign: $-0.648 - 0.761i$
Analytic conductor: \(28.1073\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3520} (2111, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3520,\ (\ :1/2),\ -0.648 - 0.761i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8019428465\)
\(L(\frac12)\) \(\approx\) \(0.8019428465\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + (2.15 + 2.52i)T \)
good3 \( 1 - 0.792iT - 3T^{2} \)
7 \( 1 + 4.70T + 7T^{2} \)
13 \( 1 + 1.01iT - 13T^{2} \)
17 \( 1 + 2.71iT - 17T^{2} \)
19 \( 1 - 2.15T + 19T^{2} \)
23 \( 1 - 5.04iT - 23T^{2} \)
29 \( 1 + 9.15iT - 29T^{2} \)
31 \( 1 - 9.30iT - 31T^{2} \)
37 \( 1 + 5.37T + 37T^{2} \)
41 \( 1 - 10.8iT - 41T^{2} \)
43 \( 1 - 2.55T + 43T^{2} \)
47 \( 1 - 1.87iT - 47T^{2} \)
53 \( 1 + 4.11T + 53T^{2} \)
59 \( 1 - 1.87iT - 59T^{2} \)
61 \( 1 - 7.13iT - 61T^{2} \)
67 \( 1 - 3.46iT - 67T^{2} \)
71 \( 1 + 6.13iT - 71T^{2} \)
73 \( 1 - 11.8iT - 73T^{2} \)
79 \( 1 + 8.60T + 79T^{2} \)
83 \( 1 + 1.75T + 83T^{2} \)
89 \( 1 + 4.11T + 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.138639800915764477227380966429, −8.111543297725928639364641159063, −7.22663556748446049403524518043, −6.61133897732998417019241206496, −5.80122125023239875205804334584, −5.19528858884355122144016081740, −4.10903315595950053919102889057, −3.22227422723914938157136636310, −2.75236162477076652597812349716, −1.15576168662604330240142940026, 0.25120615327085028879572847832, 1.71511233437883871699605145644, 2.57815887670650098889363525246, 3.53681144375040520369354672281, 4.38398068295496160834633732557, 5.44359957897612414910638731102, 6.20051342585772784761884476892, 6.94414629399119488367887640792, 7.22086130591040501970112152260, 8.297008407912849702885071451809

Graph of the $Z$-function along the critical line