Properties

Label 2-3520-1.1-c1-0-59
Degree $2$
Conductor $3520$
Sign $1$
Analytic cond. $28.1073$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.32·3-s + 5-s + 2.39·7-s + 8.04·9-s − 11-s − 2·13-s + 3.32·15-s + 3.32·17-s + 6.24·19-s + 7.97·21-s + 2·23-s + 25-s + 16.7·27-s + 1.47·29-s − 7.97·31-s − 3.32·33-s + 2.39·35-s − 6.39·37-s − 6.64·39-s − 5.44·41-s − 12.0·43-s + 8.04·45-s − 5.44·47-s − 1.24·49-s + 11.0·51-s − 6.39·53-s − 55-s + ⋯
L(s)  = 1  + 1.91·3-s + 0.447·5-s + 0.906·7-s + 2.68·9-s − 0.301·11-s − 0.554·13-s + 0.858·15-s + 0.806·17-s + 1.43·19-s + 1.73·21-s + 0.417·23-s + 0.200·25-s + 3.22·27-s + 0.273·29-s − 1.43·31-s − 0.578·33-s + 0.405·35-s − 1.05·37-s − 1.06·39-s − 0.850·41-s − 1.84·43-s + 1.19·45-s − 0.793·47-s − 0.178·49-s + 1.54·51-s − 0.878·53-s − 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3520\)    =    \(2^{6} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(28.1073\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.910869470\)
\(L(\frac12)\) \(\approx\) \(4.910869470\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good3 \( 1 - 3.32T + 3T^{2} \)
7 \( 1 - 2.39T + 7T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 - 3.32T + 17T^{2} \)
19 \( 1 - 6.24T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 1.47T + 29T^{2} \)
31 \( 1 + 7.97T + 31T^{2} \)
37 \( 1 + 6.39T + 37T^{2} \)
41 \( 1 + 5.44T + 41T^{2} \)
43 \( 1 + 12.0T + 43T^{2} \)
47 \( 1 + 5.44T + 47T^{2} \)
53 \( 1 + 6.39T + 53T^{2} \)
59 \( 1 + 14.0T + 59T^{2} \)
61 \( 1 - 0.119T + 61T^{2} \)
67 \( 1 - 6.79T + 67T^{2} \)
71 \( 1 + 5.32T + 71T^{2} \)
73 \( 1 - 11.8T + 73T^{2} \)
79 \( 1 - 5.35T + 79T^{2} \)
83 \( 1 - 0.149T + 83T^{2} \)
89 \( 1 - 9.84T + 89T^{2} \)
97 \( 1 + 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.542982683662936316813772668046, −7.83273801446578043927530043236, −7.48130304391841623912273950826, −6.64342570725449577774100684539, −5.17100283447274733885428980500, −4.85721093788513368174288819929, −3.48044015008761845592412236635, −3.14718655998096588491028575283, −1.99330159827200088562508988077, −1.44310054328567771814257239482, 1.44310054328567771814257239482, 1.99330159827200088562508988077, 3.14718655998096588491028575283, 3.48044015008761845592412236635, 4.85721093788513368174288819929, 5.17100283447274733885428980500, 6.64342570725449577774100684539, 7.48130304391841623912273950826, 7.83273801446578043927530043236, 8.542982683662936316813772668046

Graph of the $Z$-function along the critical line