L(s) = 1 | + 1.73i·3-s + (−0.5 + 0.866i)5-s − 1.99·9-s − 11-s + (−1.49 − 0.866i)15-s + 1.73i·23-s + (−0.499 − 0.866i)25-s − 1.73i·27-s − 31-s − 1.73i·33-s − 1.73i·37-s + (0.999 − 1.73i)45-s − 49-s + (0.5 − 0.866i)55-s − 59-s + ⋯ |
L(s) = 1 | + 1.73i·3-s + (−0.5 + 0.866i)5-s − 1.99·9-s − 11-s + (−1.49 − 0.866i)15-s + 1.73i·23-s + (−0.499 − 0.866i)25-s − 1.73i·27-s − 31-s − 1.73i·33-s − 1.73i·37-s + (0.999 − 1.73i)45-s − 49-s + (0.5 − 0.866i)55-s − 59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5097604018\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5097604018\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + T \) |
good | 3 | \( 1 - 1.73iT - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - 1.73iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + 1.73iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.73iT - T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 + 1.73iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.428504491463141679516085083156, −8.650368751680316502717473649803, −7.75819046476505591318378039814, −7.21934500546732208509083743260, −5.95882370993506645310466065945, −5.40530249119367340094434705633, −4.60176857958982066703390468480, −3.69501106849078729635575909196, −3.30190917640204802683499719936, −2.28477131878187930013813737081,
0.28948903540452816138240000563, 1.44321629673653656317330822670, 2.36846965196186028614873395685, 3.29353579526678005725077686489, 4.62107298996191751137655508229, 5.27416466078034725385693887564, 6.22527588521186774159283290465, 6.80635429246482385375611906903, 7.72157126202704508272933977698, 8.066362191758170309427956179372