L(s) = 1 | + (0.366 − 1.36i)2-s + (−2.78 − 4.83i)3-s + (−1.73 − i)4-s + (0.323 + 0.323i)5-s + (−7.62 + 2.04i)6-s + (−2.05 − 7.67i)7-s + (−2 + 1.99i)8-s + (−11.0 + 19.1i)9-s + (0.560 − 0.323i)10-s + (−5.40 − 1.44i)11-s + 11.1i·12-s − 11.2·14-s + (0.661 − 2.46i)15-s + (1.99 + 3.46i)16-s + (1.74 + 1.00i)17-s + (22.1 + 22.1i)18-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (−0.929 − 1.61i)3-s + (−0.433 − 0.250i)4-s + (0.0647 + 0.0647i)5-s + (−1.27 + 0.340i)6-s + (−0.293 − 1.09i)7-s + (−0.250 + 0.249i)8-s + (−1.22 + 2.12i)9-s + (0.0560 − 0.0323i)10-s + (−0.491 − 0.131i)11-s + 0.929i·12-s − 0.803·14-s + (0.0440 − 0.164i)15-s + (0.124 + 0.216i)16-s + (0.102 + 0.0591i)17-s + (1.22 + 1.22i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.283 - 0.958i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.283 - 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.351021 + 0.262226i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.351021 + 0.262226i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.366 + 1.36i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (2.78 + 4.83i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (-0.323 - 0.323i)T + 25iT^{2} \) |
| 7 | \( 1 + (2.05 + 7.67i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (5.40 + 1.44i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-1.74 - 1.00i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (4.47 - 1.19i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-15.0 + 8.71i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-8.25 - 14.2i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (9.27 + 9.27i)T + 961iT^{2} \) |
| 37 | \( 1 + (34.0 + 9.12i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (15.7 - 58.6i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (-45.2 - 26.1i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-8.73 + 8.73i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 23.4T + 2.80e3T^{2} \) |
| 59 | \( 1 + (9.13 + 34.0i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (13.9 - 24.1i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-8.85 + 33.0i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (73.8 - 19.7i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (18.9 - 18.9i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 142.T + 6.24e3T^{2} \) |
| 83 | \( 1 + (91.7 + 91.7i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (150. + 40.4i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (108. - 29.1i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82134999581307370237378916995, −10.14377226617967422610234682369, −8.511666484580022450855430979437, −7.50474545411640959320640792507, −6.70210475302622153338138275348, −5.76352679780396232760669213197, −4.55306048342209195308266398038, −2.82128773719156698540285726117, −1.39163341396058406319092220037, −0.22559803151166320965411802436,
3.10377561761759161388591726251, 4.32149729111494689301721674092, 5.43121230716292840278463830349, 5.71158184797623231499447304990, 7.03812388683350862377567022232, 8.678070481764815666785431417818, 9.250063776976257054338914227785, 10.14766026370848944350146352742, 11.04876499633339081672158294222, 11.98292662254928711279634755707