L(s) = 1 | + (−5.04 − 1.22i)3-s − 10.0·5-s + (−7 − 17.1i)7-s + (23.9 + 12.3i)9-s − 32.9i·11-s − 56.3i·13-s + (50.9 + 12.3i)15-s − 60.5·17-s − 36.7i·19-s + (14.3 + 95.1i)21-s + 90.7i·23-s − 23.0·25-s + (−106. − 91.8i)27-s + 57.7i·29-s + 254. i·31-s + ⋯ |
L(s) = 1 | + (−0.971 − 0.235i)3-s − 0.903·5-s + (−0.377 − 0.925i)7-s + (0.888 + 0.458i)9-s − 0.904i·11-s − 1.20i·13-s + (0.877 + 0.212i)15-s − 0.864·17-s − 0.443i·19-s + (0.149 + 0.988i)21-s + 0.822i·23-s − 0.184·25-s + (−0.755 − 0.654i)27-s + 0.369i·29-s + 1.47i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.149 - 0.988i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.149 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.1312525028\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1312525028\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (5.04 + 1.22i)T \) |
| 7 | \( 1 + (7 + 17.1i)T \) |
good | 5 | \( 1 + 10.0T + 125T^{2} \) |
| 11 | \( 1 + 32.9iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 56.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 60.5T + 4.91e3T^{2} \) |
| 19 | \( 1 + 36.7iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 90.7iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 57.7iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 254. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 230T + 5.06e4T^{2} \) |
| 41 | \( 1 - 141.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 44T + 7.95e4T^{2} \) |
| 47 | \( 1 + 343.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 206. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 131.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 71.0iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 64T + 3.00e5T^{2} \) |
| 71 | \( 1 - 461. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 88.1iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 442T + 4.93e5T^{2} \) |
| 83 | \( 1 + 494.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 484.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.09e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13835943927760902175538832428, −10.85449749579816889413204002873, −9.753144389789363465634060116459, −8.315226601086125125903409570506, −7.46318018103203798544884164988, −6.61881429271239653562791726818, −5.50519107520707580597242807305, −4.34361967312354276068741262228, −3.24520142985374756096313583801, −0.961147966844437532295884607482,
0.06830889117169383686571450782, 2.12628912443537593317918885320, 3.99834521209472546735275099108, 4.70204715008613220875844922955, 6.06583023160083045286257012081, 6.81353233739367418091863392493, 7.952162311326777304000185504087, 9.214926731535977121564611484131, 9.893787780631222385043140636655, 11.19599611321630655208275261481