L(s) = 1 | + (0.0621 + 0.107i)2-s + (−2.43 − 0.652i)3-s + (0.992 − 1.71i)4-s + (−0.0810 − 0.302i)6-s + (2.27 + 1.31i)7-s + 0.495·8-s + (2.90 + 1.67i)9-s + (0.780 − 2.91i)11-s + (−3.53 + 3.53i)12-s + (−3.34 − 1.34i)13-s + 0.325i·14-s + (−1.95 − 3.38i)16-s + (−1.42 − 5.32i)17-s + 0.416i·18-s + (−3.13 + 0.840i)19-s + ⋯ |
L(s) = 1 | + (0.0439 + 0.0760i)2-s + (−1.40 − 0.376i)3-s + (0.496 − 0.859i)4-s + (−0.0330 − 0.123i)6-s + (0.858 + 0.495i)7-s + 0.175·8-s + (0.968 + 0.559i)9-s + (0.235 − 0.878i)11-s + (−1.02 + 1.02i)12-s + (−0.928 − 0.372i)13-s + 0.0871i·14-s + (−0.488 − 0.846i)16-s + (−0.346 − 1.29i)17-s + 0.0982i·18-s + (−0.719 + 0.192i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.273 + 0.961i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.273 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.525488 - 0.695538i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.525488 - 0.695538i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (3.34 + 1.34i)T \) |
good | 2 | \( 1 + (-0.0621 - 0.107i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (2.43 + 0.652i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-2.27 - 1.31i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.780 + 2.91i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (1.42 + 5.32i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (3.13 - 0.840i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.62 + 6.05i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.99 + 1.72i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.63 - 6.63i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.89 + 1.09i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-8.78 - 2.35i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (2.89 - 0.775i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 2.26iT - 47T^{2} \) |
| 53 | \( 1 + (-5.63 + 5.63i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.33 + 12.4i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.79 + 4.83i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.96 - 6.86i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.12 - 15.4i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 6.95T + 73T^{2} \) |
| 79 | \( 1 - 5.90iT - 79T^{2} \) |
| 83 | \( 1 - 9.71iT - 83T^{2} \) |
| 89 | \( 1 + (-12.3 - 3.31i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-2.62 + 4.55i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.17100106205483930684813688043, −10.90166026597802737907835934641, −9.716846925216000638651154540460, −8.440341127240099174009793887404, −7.09020394244737231750011917493, −6.37143365221424024642906072671, −5.36024043044822779010905501856, −4.85424082742921366875105792237, −2.37702992167367067941632541525, −0.72485784148969014066324224416,
1.95427281559398036977609491263, 4.04616973669077261973541057354, 4.71492158176130381564065938911, 6.01250473452347764727145768244, 7.08102596927315686175930827977, 7.79398609185791622064137398574, 9.197443975519092959524906689936, 10.49126530873459327680346248162, 11.00540322554949009077295014779, 11.82186012555215422644570101515