sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(325, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([3,1]))
pari:[g,chi] = znchar(Mod(132,325))
\(\chi_{325}(32,\cdot)\)
\(\chi_{325}(132,\cdot)\)
\(\chi_{325}(193,\cdot)\)
\(\chi_{325}(293,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((27,301)\) → \((i,e\left(\frac{1}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 325 }(132, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)