L(s) = 1 | + (0.0362 + 0.135i)2-s + (1.71 − 0.990i)4-s + (1.87 + 1.21i)5-s + (0.702 + 2.55i)7-s + (0.394 + 0.394i)8-s + (−0.0969 + 0.297i)10-s + (−4.85 + 2.80i)11-s + (2.57 − 2.57i)13-s + (−0.319 + 0.187i)14-s + (1.94 − 3.36i)16-s + (−0.269 − 0.0721i)17-s + (−4.44 − 2.56i)19-s + (4.42 + 0.234i)20-s + (−0.554 − 0.554i)22-s + (4.46 − 1.19i)23-s + ⋯ |
L(s) = 1 | + (0.0256 + 0.0956i)2-s + (0.857 − 0.495i)4-s + (0.838 + 0.545i)5-s + (0.265 + 0.964i)7-s + (0.139 + 0.139i)8-s + (−0.0306 + 0.0941i)10-s + (−1.46 + 0.844i)11-s + (0.714 − 0.714i)13-s + (−0.0854 + 0.0501i)14-s + (0.485 − 0.840i)16-s + (−0.0653 − 0.0175i)17-s + (−1.01 − 0.588i)19-s + (0.988 + 0.0523i)20-s + (−0.118 − 0.118i)22-s + (0.931 − 0.249i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 - 0.390i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.71591 + 0.348829i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.71591 + 0.348829i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.87 - 1.21i)T \) |
| 7 | \( 1 + (-0.702 - 2.55i)T \) |
good | 2 | \( 1 + (-0.0362 - 0.135i)T + (-1.73 + i)T^{2} \) |
| 11 | \( 1 + (4.85 - 2.80i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.57 + 2.57i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.269 + 0.0721i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (4.44 + 2.56i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.46 + 1.19i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 2.91T + 29T^{2} \) |
| 31 | \( 1 + (1.09 + 1.89i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.35 + 1.96i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 8.73iT - 41T^{2} \) |
| 43 | \( 1 + (5.90 - 5.90i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.91 + 10.8i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-0.417 + 1.55i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.62 - 2.81i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.06 - 1.83i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.85 - 6.92i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 8.16iT - 71T^{2} \) |
| 73 | \( 1 + (7.92 + 2.12i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (0.500 + 0.289i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.12 + 3.12i)T + 83iT^{2} \) |
| 89 | \( 1 + (6.29 - 10.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.25 + 8.25i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47872651089381806207953500722, −10.70604248752086857059747799359, −10.12816243382434620014699556984, −8.966620042360806256211885575691, −7.77186496498184690639826241302, −6.74390369476600756292778124165, −5.77183053525589843536312089095, −5.09205381466646992687901417498, −2.80029125427660813704907064409, −2.05722120407031838424633990049,
1.57281659211189503655257720231, 3.01916471241978165109365491807, 4.42892654555304048271553233251, 5.77333283013015075398523605396, 6.69552367244864688806658573801, 7.87579591791300042171474584374, 8.576756488755795940208070254746, 9.942363780603454752707450740281, 10.85191723699433811874194643165, 11.30555154922633904483126583451