Properties

Label 2-31-31.30-c6-0-4
Degree $2$
Conductor $31$
Sign $-0.485 - 0.874i$
Analytic cond. $7.13167$
Root an. cond. $2.67051$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12.4·2-s + 30.2i·3-s + 90.5·4-s + 96.4·5-s − 376. i·6-s + 161.·7-s − 329.·8-s − 186.·9-s − 1.19e3·10-s + 701. i·11-s + 2.73e3i·12-s + 3.27e3i·13-s − 2.01e3·14-s + 2.91e3i·15-s − 1.69e3·16-s − 2.15e3i·17-s + ⋯
L(s)  = 1  − 1.55·2-s + 1.12i·3-s + 1.41·4-s + 0.771·5-s − 1.74i·6-s + 0.472·7-s − 0.643·8-s − 0.256·9-s − 1.19·10-s + 0.526i·11-s + 1.58i·12-s + 1.49i·13-s − 0.733·14-s + 0.864i·15-s − 0.413·16-s − 0.438i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.485 - 0.874i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.485 - 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31\)
Sign: $-0.485 - 0.874i$
Analytic conductor: \(7.13167\)
Root analytic conductor: \(2.67051\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{31} (30, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 31,\ (\ :3),\ -0.485 - 0.874i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.412722 + 0.701605i\)
\(L(\frac12)\) \(\approx\) \(0.412722 + 0.701605i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 + (-1.44e4 - 2.60e4i)T \)
good2 \( 1 + 12.4T + 64T^{2} \)
3 \( 1 - 30.2iT - 729T^{2} \)
5 \( 1 - 96.4T + 1.56e4T^{2} \)
7 \( 1 - 161.T + 1.17e5T^{2} \)
11 \( 1 - 701. iT - 1.77e6T^{2} \)
13 \( 1 - 3.27e3iT - 4.82e6T^{2} \)
17 \( 1 + 2.15e3iT - 2.41e7T^{2} \)
19 \( 1 + 3.21e3T + 4.70e7T^{2} \)
23 \( 1 + 3.47e3iT - 1.48e8T^{2} \)
29 \( 1 + 3.94e3iT - 5.94e8T^{2} \)
37 \( 1 - 8.17e4iT - 2.56e9T^{2} \)
41 \( 1 + 7.28e4T + 4.75e9T^{2} \)
43 \( 1 + 4.20e4iT - 6.32e9T^{2} \)
47 \( 1 - 1.54e5T + 1.07e10T^{2} \)
53 \( 1 + 2.00e5iT - 2.21e10T^{2} \)
59 \( 1 - 6.40e4T + 4.21e10T^{2} \)
61 \( 1 - 3.87e5iT - 5.15e10T^{2} \)
67 \( 1 - 9.93e4T + 9.04e10T^{2} \)
71 \( 1 - 2.17e5T + 1.28e11T^{2} \)
73 \( 1 + 6.15e5iT - 1.51e11T^{2} \)
79 \( 1 - 1.02e5iT - 2.43e11T^{2} \)
83 \( 1 - 3.80e5iT - 3.26e11T^{2} \)
89 \( 1 + 4.50e5iT - 4.96e11T^{2} \)
97 \( 1 + 3.41e5T + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.39855912511606682384309066878, −15.24723389480209312129656424954, −13.84575780778311828610270337141, −11.63274255503057568179392777400, −10.34757251119711660680782705817, −9.638607185253847529640303502333, −8.651436983599394536510246554993, −6.86544742281649385520769462726, −4.63477675449427703599916416220, −1.81614438312765392296263881268, 0.75062963100294599963156124590, 2.07599956034461211102338320080, 6.00646848803736778951684018075, 7.52432269567812081999268666306, 8.416242987238362881357558377213, 9.920238483644613788106180673262, 11.04995932791456432839842622219, 12.68914280645134550333005946325, 13.79718984969327008292359499839, 15.53352813637390124250743798310

Graph of the $Z$-function along the critical line