Properties

Label 31.7.b.c.30.2
Level $31$
Weight $7$
Character 31.30
Analytic conductor $7.132$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,7,Mod(30,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.30"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13167659222\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 7208 x^{10} + 19859688 x^{8} + 26566749360 x^{6} + 17884354852944 x^{4} + \cdots + 59\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 30.2
Root \(-30.2629i\) of defining polynomial
Character \(\chi\) \(=\) 31.30
Dual form 31.7.b.c.30.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.4307 q^{2} +30.2629i q^{3} +90.5217 q^{4} +96.4253 q^{5} -376.188i q^{6} +161.968 q^{7} -329.682 q^{8} -186.843 q^{9} -1198.63 q^{10} +701.001i q^{11} +2739.45i q^{12} +3277.00i q^{13} -2013.37 q^{14} +2918.11i q^{15} -1695.21 q^{16} -2154.64i q^{17} +2322.59 q^{18} -3211.85 q^{19} +8728.58 q^{20} +4901.61i q^{21} -8713.91i q^{22} -3478.24i q^{23} -9977.14i q^{24} -6327.15 q^{25} -40735.3i q^{26} +16407.2i q^{27} +14661.6 q^{28} -3941.36i q^{29} -36274.1i q^{30} +(14473.5 + 26038.8i) q^{31} +42172.3 q^{32} -21214.3 q^{33} +26783.7i q^{34} +15617.8 q^{35} -16913.4 q^{36} +81754.0i q^{37} +39925.4 q^{38} -99171.5 q^{39} -31789.7 q^{40} -72810.2 q^{41} -60930.4i q^{42} -42043.8i q^{43} +63455.8i q^{44} -18016.4 q^{45} +43236.8i q^{46} +154153. q^{47} -51302.1i q^{48} -91415.4 q^{49} +78650.8 q^{50} +65205.7 q^{51} +296640. i q^{52} -200092. i q^{53} -203953. i q^{54} +67594.2i q^{55} -53397.9 q^{56} -97199.8i q^{57} +48993.7i q^{58} +64070.9 q^{59} +264152. i q^{60} +387246. i q^{61} +(-179916. - 323680. i) q^{62} -30262.6 q^{63} -415737. q^{64} +315986. i q^{65} +263708. q^{66} +99363.7 q^{67} -195042. i q^{68} +105262. q^{69} -194140. q^{70} +217702. q^{71} +61598.9 q^{72} -615580. i q^{73} -1.01626e6i q^{74} -191478. i q^{75} -290742. q^{76} +113540. i q^{77} +1.23277e6 q^{78} +102116. i q^{79} -163462. q^{80} -632739. q^{81} +905080. q^{82} +380355. i q^{83} +443702. i q^{84} -207762. i q^{85} +522633. i q^{86} +119277. q^{87} -231108. i q^{88} -450409. i q^{89} +223956. q^{90} +530768. i q^{91} -314856. i q^{92} +(-788011. + 438011. i) q^{93} -1.91623e6 q^{94} -309703. q^{95} +1.27626e6i q^{96} -341949. q^{97} +1.13636e6 q^{98} -130977. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 122 q^{4} - 146 q^{5} + 6 q^{7} + 1142 q^{8} - 5668 q^{9} - 3004 q^{10} - 1312 q^{14} - 1102 q^{16} - 16382 q^{18} + 10430 q^{19} - 8052 q^{20} + 29618 q^{25} + 136504 q^{28} + 90076 q^{31}+ \cdots + 408810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −12.4307 −1.55383 −0.776917 0.629603i \(-0.783218\pi\)
−0.776917 + 0.629603i \(0.783218\pi\)
\(3\) 30.2629i 1.12085i 0.828206 + 0.560424i \(0.189362\pi\)
−0.828206 + 0.560424i \(0.810638\pi\)
\(4\) 90.5217 1.41440
\(5\) 96.4253 0.771403 0.385701 0.922624i \(-0.373960\pi\)
0.385701 + 0.922624i \(0.373960\pi\)
\(6\) 376.188i 1.74161i
\(7\) 161.968 0.472209 0.236105 0.971728i \(-0.424129\pi\)
0.236105 + 0.971728i \(0.424129\pi\)
\(8\) −329.682 −0.643911
\(9\) −186.843 −0.256301
\(10\) −1198.63 −1.19863
\(11\) 701.001i 0.526672i 0.964704 + 0.263336i \(0.0848228\pi\)
−0.964704 + 0.263336i \(0.915177\pi\)
\(12\) 2739.45i 1.58533i
\(13\) 3277.00i 1.49158i 0.666181 + 0.745790i \(0.267928\pi\)
−0.666181 + 0.745790i \(0.732072\pi\)
\(14\) −2013.37 −0.733735
\(15\) 2918.11i 0.864625i
\(16\) −1695.21 −0.413870
\(17\) 2154.64i 0.438560i −0.975662 0.219280i \(-0.929629\pi\)
0.975662 0.219280i \(-0.0703707\pi\)
\(18\) 2322.59 0.398249
\(19\) −3211.85 −0.468268 −0.234134 0.972204i \(-0.575225\pi\)
−0.234134 + 0.972204i \(0.575225\pi\)
\(20\) 8728.58 1.09107
\(21\) 4901.61i 0.529275i
\(22\) 8713.91i 0.818361i
\(23\) 3478.24i 0.285875i −0.989732 0.142937i \(-0.954345\pi\)
0.989732 0.142937i \(-0.0456547\pi\)
\(24\) 9977.14i 0.721726i
\(25\) −6327.15 −0.404938
\(26\) 40735.3i 2.31767i
\(27\) 16407.2i 0.833574i
\(28\) 14661.6 0.667893
\(29\) 3941.36i 0.161604i −0.996730 0.0808019i \(-0.974252\pi\)
0.996730 0.0808019i \(-0.0257481\pi\)
\(30\) 36274.1i 1.34348i
\(31\) 14473.5 + 26038.8i 0.485835 + 0.874050i
\(32\) 42172.3 1.28700
\(33\) −21214.3 −0.590320
\(34\) 26783.7i 0.681449i
\(35\) 15617.8 0.364263
\(36\) −16913.4 −0.362512
\(37\) 81754.0i 1.61400i 0.590551 + 0.807000i \(0.298910\pi\)
−0.590551 + 0.807000i \(0.701090\pi\)
\(38\) 39925.4 0.727610
\(39\) −99171.5 −1.67183
\(40\) −31789.7 −0.496715
\(41\) −72810.2 −1.05643 −0.528215 0.849111i \(-0.677139\pi\)
−0.528215 + 0.849111i \(0.677139\pi\)
\(42\) 60930.4i 0.822405i
\(43\) 42043.8i 0.528807i −0.964412 0.264403i \(-0.914825\pi\)
0.964412 0.264403i \(-0.0851750\pi\)
\(44\) 63455.8i 0.744926i
\(45\) −18016.4 −0.197711
\(46\) 43236.8i 0.444202i
\(47\) 154153. 1.48477 0.742385 0.669974i \(-0.233695\pi\)
0.742385 + 0.669974i \(0.233695\pi\)
\(48\) 51302.1i 0.463886i
\(49\) −91415.4 −0.777018
\(50\) 78650.8 0.629206
\(51\) 65205.7 0.491559
\(52\) 296640.i 2.10969i
\(53\) 200092.i 1.34401i −0.740548 0.672003i \(-0.765434\pi\)
0.740548 0.672003i \(-0.234566\pi\)
\(54\) 203953.i 1.29524i
\(55\) 67594.2i 0.406276i
\(56\) −53397.9 −0.304061
\(57\) 97199.8i 0.524857i
\(58\) 48993.7i 0.251106i
\(59\) 64070.9 0.311964 0.155982 0.987760i \(-0.450146\pi\)
0.155982 + 0.987760i \(0.450146\pi\)
\(60\) 264152.i 1.22293i
\(61\) 387246.i 1.70607i 0.521852 + 0.853036i \(0.325241\pi\)
−0.521852 + 0.853036i \(0.674759\pi\)
\(62\) −179916. 323680.i −0.754907 1.35813i
\(63\) −30262.6 −0.121028
\(64\) −415737. −1.58591
\(65\) 315986.i 1.15061i
\(66\) 263708. 0.917259
\(67\) 99363.7 0.330372 0.165186 0.986262i \(-0.447178\pi\)
0.165186 + 0.986262i \(0.447178\pi\)
\(68\) 195042.i 0.620299i
\(69\) 105262. 0.320422
\(70\) −194140. −0.566005
\(71\) 217702. 0.608257 0.304128 0.952631i \(-0.401635\pi\)
0.304128 + 0.952631i \(0.401635\pi\)
\(72\) 61598.9 0.165035
\(73\) 615580.i 1.58240i −0.611558 0.791200i \(-0.709457\pi\)
0.611558 0.791200i \(-0.290543\pi\)
\(74\) 1.01626e6i 2.50789i
\(75\) 191478.i 0.453874i
\(76\) −290742. −0.662318
\(77\) 113540.i 0.248699i
\(78\) 1.23277e6 2.59775
\(79\) 102116.i 0.207116i 0.994623 + 0.103558i \(0.0330227\pi\)
−0.994623 + 0.103558i \(0.966977\pi\)
\(80\) −163462. −0.319261
\(81\) −632739. −1.19061
\(82\) 905080. 1.64152
\(83\) 380355.i 0.665203i 0.943067 + 0.332602i \(0.107926\pi\)
−0.943067 + 0.332602i \(0.892074\pi\)
\(84\) 443702.i 0.748607i
\(85\) 207762.i 0.338306i
\(86\) 522633.i 0.821678i
\(87\) 119277. 0.181133
\(88\) 231108.i 0.339130i
\(89\) 450409.i 0.638906i −0.947602 0.319453i \(-0.896501\pi\)
0.947602 0.319453i \(-0.103499\pi\)
\(90\) 223956. 0.307210
\(91\) 530768.i 0.704338i
\(92\) 314856.i 0.404341i
\(93\) −788011. + 438011.i −0.979678 + 0.544547i
\(94\) −1.91623e6 −2.30709
\(95\) −309703. −0.361223
\(96\) 1.27626e6i 1.44253i
\(97\) −341949. −0.374667 −0.187334 0.982296i \(-0.559985\pi\)
−0.187334 + 0.982296i \(0.559985\pi\)
\(98\) 1.13636e6 1.20736
\(99\) 130977.i 0.134986i
\(100\) −572745. −0.572745
\(101\) −1.11954e6 −1.08661 −0.543306 0.839535i \(-0.682828\pi\)
−0.543306 + 0.839535i \(0.682828\pi\)
\(102\) −810551. −0.763801
\(103\) 795682. 0.728161 0.364081 0.931367i \(-0.381383\pi\)
0.364081 + 0.931367i \(0.381383\pi\)
\(104\) 1.08037e6i 0.960444i
\(105\) 472640.i 0.408284i
\(106\) 2.48727e6i 2.08836i
\(107\) 1.13029e6 0.922657 0.461329 0.887229i \(-0.347373\pi\)
0.461329 + 0.887229i \(0.347373\pi\)
\(108\) 1.48521e6i 1.17901i
\(109\) 1.98556e6 1.53322 0.766609 0.642114i \(-0.221942\pi\)
0.766609 + 0.642114i \(0.221942\pi\)
\(110\) 840242.i 0.631286i
\(111\) −2.47411e6 −1.80905
\(112\) −274570. −0.195433
\(113\) 2.24367e6 1.55498 0.777488 0.628898i \(-0.216494\pi\)
0.777488 + 0.628898i \(0.216494\pi\)
\(114\) 1.20826e6i 0.815541i
\(115\) 335390.i 0.220524i
\(116\) 356778.i 0.228573i
\(117\) 612285.i 0.382293i
\(118\) −796444. −0.484740
\(119\) 348983.i 0.207092i
\(120\) 962049.i 0.556742i
\(121\) 1.28016e6 0.722616
\(122\) 4.81373e6i 2.65095i
\(123\) 2.20345e6i 1.18410i
\(124\) 1.31017e6 + 2.35708e6i 0.687166 + 1.23626i
\(125\) −2.11674e6 −1.08377
\(126\) 376184. 0.188057
\(127\) 3.28777e6i 1.60506i −0.596614 0.802529i \(-0.703488\pi\)
0.596614 0.802529i \(-0.296512\pi\)
\(128\) 2.46886e6 1.17724
\(129\) 1.27237e6 0.592712
\(130\) 3.92792e6i 1.78785i
\(131\) 3.32420e6 1.47868 0.739339 0.673333i \(-0.235138\pi\)
0.739339 + 0.673333i \(0.235138\pi\)
\(132\) −1.92036e6 −0.834949
\(133\) −520216. −0.221120
\(134\) −1.23516e6 −0.513344
\(135\) 1.58207e6i 0.643021i
\(136\) 710348.i 0.282393i
\(137\) 1.38654e6i 0.539227i 0.962969 + 0.269613i \(0.0868959\pi\)
−0.962969 + 0.269613i \(0.913104\pi\)
\(138\) −1.30847e6 −0.497883
\(139\) 2.05391e6i 0.764781i −0.924001 0.382390i \(-0.875101\pi\)
0.924001 0.382390i \(-0.124899\pi\)
\(140\) 1.41375e6 0.515215
\(141\) 4.66512e6i 1.66420i
\(142\) −2.70618e6 −0.945130
\(143\) −2.29718e6 −0.785573
\(144\) 316739. 0.106075
\(145\) 380047.i 0.124662i
\(146\) 7.65208e6i 2.45879i
\(147\) 2.76650e6i 0.870920i
\(148\) 7.40051e6i 2.28284i
\(149\) −4.18443e6 −1.26496 −0.632481 0.774576i \(-0.717964\pi\)
−0.632481 + 0.774576i \(0.717964\pi\)
\(150\) 2.38020e6i 0.705245i
\(151\) 4.51757e6i 1.31212i −0.754708 0.656060i \(-0.772222\pi\)
0.754708 0.656060i \(-0.227778\pi\)
\(152\) 1.05889e6 0.301522
\(153\) 402581.i 0.112403i
\(154\) 1.41137e6i 0.386438i
\(155\) 1.39561e6 + 2.51080e6i 0.374775 + 0.674245i
\(156\) −8.97717e6 −2.36464
\(157\) 7.23828e6 1.87041 0.935205 0.354108i \(-0.115215\pi\)
0.935205 + 0.354108i \(0.115215\pi\)
\(158\) 1.26937e6i 0.321823i
\(159\) 6.05536e6 1.50643
\(160\) 4.06648e6 0.992793
\(161\) 563362.i 0.134993i
\(162\) 7.86538e6 1.85001
\(163\) −1.62356e6 −0.374891 −0.187446 0.982275i \(-0.560021\pi\)
−0.187446 + 0.982275i \(0.560021\pi\)
\(164\) −6.59090e6 −1.49422
\(165\) −2.04560e6 −0.455374
\(166\) 4.72806e6i 1.03362i
\(167\) 2.89718e6i 0.622051i −0.950402 0.311026i \(-0.899327\pi\)
0.950402 0.311026i \(-0.100673\pi\)
\(168\) 1.61598e6i 0.340806i
\(169\) −5.91192e6 −1.22481
\(170\) 2.58262e6i 0.525671i
\(171\) 600112. 0.120017
\(172\) 3.80588e6i 0.747945i
\(173\) −2.98193e6 −0.575916 −0.287958 0.957643i \(-0.592976\pi\)
−0.287958 + 0.957643i \(0.592976\pi\)
\(174\) −1.48269e6 −0.281451
\(175\) −1.02479e6 −0.191215
\(176\) 1.18835e6i 0.217974i
\(177\) 1.93897e6i 0.349664i
\(178\) 5.59889e6i 0.992754i
\(179\) 1.79934e6i 0.313728i −0.987620 0.156864i \(-0.949862\pi\)
0.987620 0.156864i \(-0.0501384\pi\)
\(180\) −1.63088e6 −0.279643
\(181\) 1.02341e7i 1.72589i 0.505300 + 0.862944i \(0.331382\pi\)
−0.505300 + 0.862944i \(0.668618\pi\)
\(182\) 6.59781e6i 1.09442i
\(183\) −1.17192e7 −1.91225
\(184\) 1.14671e6i 0.184078i
\(185\) 7.88315e6i 1.24504i
\(186\) 9.79551e6 5.44477e6i 1.52226 0.846137i
\(187\) 1.51041e6 0.230977
\(188\) 1.39542e7 2.10006
\(189\) 2.65744e6i 0.393621i
\(190\) 3.84982e6 0.561280
\(191\) 5.96593e6 0.856206 0.428103 0.903730i \(-0.359182\pi\)
0.428103 + 0.903730i \(0.359182\pi\)
\(192\) 1.25814e7i 1.77756i
\(193\) 329620. 0.0458502 0.0229251 0.999737i \(-0.492702\pi\)
0.0229251 + 0.999737i \(0.492702\pi\)
\(194\) 4.25065e6 0.582171
\(195\) −9.56265e6 −1.28966
\(196\) −8.27508e6 −1.09902
\(197\) 3.04005e6i 0.397633i 0.980037 + 0.198816i \(0.0637097\pi\)
−0.980037 + 0.198816i \(0.936290\pi\)
\(198\) 1.62814e6i 0.209747i
\(199\) 1.10648e6i 0.140405i 0.997533 + 0.0702026i \(0.0223646\pi\)
−0.997533 + 0.0702026i \(0.977635\pi\)
\(200\) 2.08595e6 0.260744
\(201\) 3.00704e6i 0.370297i
\(202\) 1.39166e7 1.68842
\(203\) 638373.i 0.0763108i
\(204\) 5.90253e6 0.695261
\(205\) −7.02075e6 −0.814933
\(206\) −9.89086e6 −1.13144
\(207\) 649885.i 0.0732699i
\(208\) 5.55521e6i 0.617321i
\(209\) 2.25151e6i 0.246623i
\(210\) 5.87523e6i 0.634406i
\(211\) −6.03041e6 −0.641948 −0.320974 0.947088i \(-0.604010\pi\)
−0.320974 + 0.947088i \(0.604010\pi\)
\(212\) 1.81126e7i 1.90096i
\(213\) 6.58829e6i 0.681764i
\(214\) −1.40503e7 −1.43366
\(215\) 4.05409e6i 0.407923i
\(216\) 5.40918e6i 0.536747i
\(217\) 2.34424e6 + 4.21745e6i 0.229416 + 0.412735i
\(218\) −2.46819e7 −2.38237
\(219\) 1.86292e7 1.77363
\(220\) 6.11874e6i 0.574638i
\(221\) 7.06076e6 0.654146
\(222\) 3.07549e7 2.81096
\(223\) 1.57869e7i 1.42358i 0.702392 + 0.711790i \(0.252115\pi\)
−0.702392 + 0.711790i \(0.747885\pi\)
\(224\) 6.83056e6 0.607732
\(225\) 1.18219e6 0.103786
\(226\) −2.78903e7 −2.41618
\(227\) 1.24063e7 1.06063 0.530317 0.847800i \(-0.322073\pi\)
0.530317 + 0.847800i \(0.322073\pi\)
\(228\) 8.79869e6i 0.742358i
\(229\) 1.44833e7i 1.20604i −0.797727 0.603019i \(-0.793964\pi\)
0.797727 0.603019i \(-0.206036\pi\)
\(230\) 4.16912e6i 0.342658i
\(231\) −3.43604e6 −0.278754
\(232\) 1.29940e6i 0.104058i
\(233\) −7.02565e6 −0.555417 −0.277708 0.960665i \(-0.589575\pi\)
−0.277708 + 0.960665i \(0.589575\pi\)
\(234\) 7.61112e6i 0.594020i
\(235\) 1.48643e7 1.14536
\(236\) 5.79980e6 0.441242
\(237\) −3.09033e6 −0.232145
\(238\) 4.33809e6i 0.321786i
\(239\) 1.77017e7i 1.29664i −0.761366 0.648322i \(-0.775471\pi\)
0.761366 0.648322i \(-0.224529\pi\)
\(240\) 4.94682e6i 0.357843i
\(241\) 6.76013e6i 0.482952i −0.970407 0.241476i \(-0.922368\pi\)
0.970407 0.241476i \(-0.0776315\pi\)
\(242\) −1.59132e7 −1.12283
\(243\) 7.18765e6i 0.500920i
\(244\) 3.50541e7i 2.41307i
\(245\) −8.81477e6 −0.599394
\(246\) 2.73904e7i 1.83989i
\(247\) 1.05252e7i 0.698458i
\(248\) −4.77166e6 8.58454e6i −0.312834 0.562811i
\(249\) −1.15106e7 −0.745592
\(250\) 2.63126e7 1.68400
\(251\) 2.48616e7i 1.57220i 0.618098 + 0.786101i \(0.287904\pi\)
−0.618098 + 0.786101i \(0.712096\pi\)
\(252\) −2.73942e6 −0.171182
\(253\) 2.43825e6 0.150562
\(254\) 4.08692e7i 2.49399i
\(255\) 6.28749e6 0.379190
\(256\) −4.08244e6 −0.243332
\(257\) −1.54178e7 −0.908288 −0.454144 0.890928i \(-0.650055\pi\)
−0.454144 + 0.890928i \(0.650055\pi\)
\(258\) −1.58164e7 −0.920976
\(259\) 1.32415e7i 0.762146i
\(260\) 2.86036e7i 1.62742i
\(261\) 736416.i 0.0414192i
\(262\) −4.13221e7 −2.29762
\(263\) 2.98355e7i 1.64008i −0.572303 0.820042i \(-0.693950\pi\)
0.572303 0.820042i \(-0.306050\pi\)
\(264\) 6.99398e6 0.380113
\(265\) 1.92939e7i 1.03677i
\(266\) 6.46663e6 0.343584
\(267\) 1.36307e7 0.716117
\(268\) 8.99457e6 0.467279
\(269\) 1.56423e7i 0.803607i 0.915726 + 0.401804i \(0.131617\pi\)
−0.915726 + 0.401804i \(0.868383\pi\)
\(270\) 1.96662e7i 0.999148i
\(271\) 1.75308e7i 0.880834i −0.897793 0.440417i \(-0.854831\pi\)
0.897793 0.440417i \(-0.145169\pi\)
\(272\) 3.65258e6i 0.181507i
\(273\) −1.60626e7 −0.789455
\(274\) 1.72357e7i 0.837869i
\(275\) 4.43534e6i 0.213269i
\(276\) 9.52845e6 0.453205
\(277\) 1.54337e7i 0.726160i −0.931758 0.363080i \(-0.881725\pi\)
0.931758 0.363080i \(-0.118275\pi\)
\(278\) 2.55315e7i 1.18834i
\(279\) −2.70428e6 4.86518e6i −0.124520 0.224020i
\(280\) −5.14891e6 −0.234553
\(281\) 4.37222e6 0.197053 0.0985266 0.995134i \(-0.468587\pi\)
0.0985266 + 0.995134i \(0.468587\pi\)
\(282\) 5.79906e7i 2.58589i
\(283\) 1.85465e7 0.818282 0.409141 0.912471i \(-0.365828\pi\)
0.409141 + 0.912471i \(0.365828\pi\)
\(284\) 1.97067e7 0.860319
\(285\) 9.37252e6i 0.404876i
\(286\) 2.85555e7 1.22065
\(287\) −1.17929e7 −0.498856
\(288\) −7.87961e6 −0.329858
\(289\) 1.94951e7 0.807666
\(290\) 4.72424e6i 0.193704i
\(291\) 1.03484e7i 0.419945i
\(292\) 5.57234e7i 2.23815i
\(293\) 2.21442e7 0.880355 0.440178 0.897911i \(-0.354916\pi\)
0.440178 + 0.897911i \(0.354916\pi\)
\(294\) 3.43894e7i 1.35327i
\(295\) 6.17805e6 0.240650
\(296\) 2.69528e7i 1.03927i
\(297\) −1.15015e7 −0.439020
\(298\) 5.20153e7 1.96554
\(299\) 1.13982e7 0.426405
\(300\) 1.73329e7i 0.641960i
\(301\) 6.80975e6i 0.249707i
\(302\) 5.61564e7i 2.03882i
\(303\) 3.38805e7i 1.21793i
\(304\) 5.44477e6 0.193802
\(305\) 3.73403e7i 1.31607i
\(306\) 5.00435e6i 0.174656i
\(307\) 1.95249e7 0.674796 0.337398 0.941362i \(-0.390453\pi\)
0.337398 + 0.941362i \(0.390453\pi\)
\(308\) 1.02778e7i 0.351761i
\(309\) 2.40796e7i 0.816158i
\(310\) −1.73484e7 3.12110e7i −0.582338 1.04766i
\(311\) −3.81323e7 −1.26769 −0.633843 0.773462i \(-0.718523\pi\)
−0.633843 + 0.773462i \(0.718523\pi\)
\(312\) 3.26951e7 1.07651
\(313\) 1.85533e7i 0.605046i 0.953142 + 0.302523i \(0.0978289\pi\)
−0.953142 + 0.302523i \(0.902171\pi\)
\(314\) −8.99768e7 −2.90631
\(315\) −2.91808e6 −0.0933610
\(316\) 9.24372e6i 0.292945i
\(317\) 3.69576e6 0.116018 0.0580091 0.998316i \(-0.481525\pi\)
0.0580091 + 0.998316i \(0.481525\pi\)
\(318\) −7.52722e7 −2.34074
\(319\) 2.76289e6 0.0851122
\(320\) −4.00876e7 −1.22337
\(321\) 3.42060e7i 1.03416i
\(322\) 7.00297e6i 0.209756i
\(323\) 6.92038e6i 0.205363i
\(324\) −5.72766e7 −1.68400
\(325\) 2.07341e7i 0.603997i
\(326\) 2.01819e7 0.582519
\(327\) 6.00889e7i 1.71850i
\(328\) 2.40042e7 0.680247
\(329\) 2.49679e7 0.701122
\(330\) 2.54282e7 0.707576
\(331\) 4.67507e7i 1.28915i −0.764540 0.644576i \(-0.777034\pi\)
0.764540 0.644576i \(-0.222966\pi\)
\(332\) 3.44303e7i 0.940864i
\(333\) 1.52752e7i 0.413670i
\(334\) 3.60139e7i 0.966565i
\(335\) 9.58118e6 0.254850
\(336\) 8.30928e6i 0.219051i
\(337\) 7.00838e6i 0.183117i −0.995800 0.0915583i \(-0.970815\pi\)
0.995800 0.0915583i \(-0.0291848\pi\)
\(338\) 7.34891e7 1.90315
\(339\) 6.79000e7i 1.74289i
\(340\) 1.88070e7i 0.478500i
\(341\) −1.82532e7 + 1.01459e7i −0.460338 + 0.255876i
\(342\) −7.45980e6 −0.186487
\(343\) −3.38617e7 −0.839125
\(344\) 1.38611e7i 0.340504i
\(345\) 1.01499e7 0.247174
\(346\) 3.70674e7 0.894878
\(347\) 2.47428e7i 0.592188i −0.955159 0.296094i \(-0.904316\pi\)
0.955159 0.296094i \(-0.0956842\pi\)
\(348\) 1.07971e7 0.256195
\(349\) −6.63858e7 −1.56170 −0.780852 0.624716i \(-0.785215\pi\)
−0.780852 + 0.624716i \(0.785215\pi\)
\(350\) 1.27389e7 0.297117
\(351\) −5.37665e7 −1.24334
\(352\) 2.95628e7i 0.677825i
\(353\) 2.01840e7i 0.458862i 0.973325 + 0.229431i \(0.0736865\pi\)
−0.973325 + 0.229431i \(0.926313\pi\)
\(354\) 2.41027e7i 0.543320i
\(355\) 2.09920e7 0.469211
\(356\) 4.07718e7i 0.903669i
\(357\) 1.05612e7 0.232119
\(358\) 2.23670e7i 0.487481i
\(359\) 3.50695e7 0.757959 0.378979 0.925405i \(-0.376275\pi\)
0.378979 + 0.925405i \(0.376275\pi\)
\(360\) 5.93970e6 0.127308
\(361\) −3.67299e7 −0.780726
\(362\) 1.27216e8i 2.68174i
\(363\) 3.87413e7i 0.809943i
\(364\) 4.80460e7i 0.996216i
\(365\) 5.93575e7i 1.22067i
\(366\) 1.45677e8 2.97132
\(367\) 8.41476e7i 1.70233i 0.524899 + 0.851165i \(0.324103\pi\)
−0.524899 + 0.851165i \(0.675897\pi\)
\(368\) 5.89635e6i 0.118315i
\(369\) 1.36041e7 0.270764
\(370\) 9.79929e7i 1.93459i
\(371\) 3.24084e7i 0.634652i
\(372\) −7.13321e7 + 3.96495e7i −1.38566 + 0.770209i
\(373\) 1.09717e7 0.211421 0.105711 0.994397i \(-0.466288\pi\)
0.105711 + 0.994397i \(0.466288\pi\)
\(374\) −1.87754e7 −0.358900
\(375\) 6.40588e7i 1.21474i
\(376\) −5.08216e7 −0.956059
\(377\) 1.29158e7 0.241045
\(378\) 3.30338e7i 0.611622i
\(379\) −4.92659e7 −0.904960 −0.452480 0.891775i \(-0.649461\pi\)
−0.452480 + 0.891775i \(0.649461\pi\)
\(380\) −2.80349e7 −0.510914
\(381\) 9.94975e7 1.79903
\(382\) −7.41606e7 −1.33040
\(383\) 1.01955e7i 0.181474i −0.995875 0.0907368i \(-0.971078\pi\)
0.995875 0.0907368i \(-0.0289222\pi\)
\(384\) 7.47148e7i 1.31951i
\(385\) 1.09481e7i 0.191847i
\(386\) −4.09740e6 −0.0712437
\(387\) 7.85561e6i 0.135534i
\(388\) −3.09538e7 −0.529930
\(389\) 6.89117e7i 1.17070i −0.810782 0.585348i \(-0.800958\pi\)
0.810782 0.585348i \(-0.199042\pi\)
\(390\) 1.18870e8 2.00391
\(391\) −7.49435e6 −0.125373
\(392\) 3.01381e7 0.500331
\(393\) 1.00600e8i 1.65737i
\(394\) 3.77899e7i 0.617855i
\(395\) 9.84658e6i 0.159770i
\(396\) 1.18563e7i 0.190925i
\(397\) 1.03020e8 1.64646 0.823228 0.567711i \(-0.192171\pi\)
0.823228 + 0.567711i \(0.192171\pi\)
\(398\) 1.37543e7i 0.218166i
\(399\) 1.57432e7i 0.247842i
\(400\) 1.07259e7 0.167592
\(401\) 1.09891e8i 1.70423i −0.523354 0.852115i \(-0.675320\pi\)
0.523354 0.852115i \(-0.324680\pi\)
\(402\) 3.73795e7i 0.575380i
\(403\) −8.53293e7 + 4.74297e7i −1.30372 + 0.724662i
\(404\) −1.01342e8 −1.53691
\(405\) −6.10121e7 −0.918440
\(406\) 7.93540e6i 0.118574i
\(407\) −5.73096e7 −0.850049
\(408\) −2.14972e7 −0.316520
\(409\) 6.05111e6i 0.0884434i −0.999022 0.0442217i \(-0.985919\pi\)
0.999022 0.0442217i \(-0.0140808\pi\)
\(410\) 8.72727e7 1.26627
\(411\) −4.19608e7 −0.604391
\(412\) 7.20264e7 1.02991
\(413\) 1.03774e7 0.147312
\(414\) 8.07851e6i 0.113849i
\(415\) 3.66758e7i 0.513140i
\(416\) 1.38199e8i 1.91966i
\(417\) 6.21573e7 0.857203
\(418\) 2.79877e7i 0.383212i
\(419\) −1.73644e7 −0.236058 −0.118029 0.993010i \(-0.537658\pi\)
−0.118029 + 0.993010i \(0.537658\pi\)
\(420\) 4.27842e7i 0.577477i
\(421\) 1.03647e7 0.138902 0.0694511 0.997585i \(-0.477875\pi\)
0.0694511 + 0.997585i \(0.477875\pi\)
\(422\) 7.49621e7 0.997480
\(423\) −2.88025e7 −0.380548
\(424\) 6.59667e7i 0.865420i
\(425\) 1.36328e7i 0.177589i
\(426\) 8.18969e7i 1.05935i
\(427\) 6.27213e7i 0.805623i
\(428\) 1.02316e8 1.30501
\(429\) 6.95193e7i 0.880508i
\(430\) 5.03951e7i 0.633845i
\(431\) 2.97300e7 0.371332 0.185666 0.982613i \(-0.440556\pi\)
0.185666 + 0.982613i \(0.440556\pi\)
\(432\) 2.78138e7i 0.344992i
\(433\) 1.20248e6i 0.0148121i 0.999973 + 0.00740603i \(0.00235743\pi\)
−0.999973 + 0.00740603i \(0.997643\pi\)
\(434\) −2.91405e7 5.24258e7i −0.356474 0.641321i
\(435\) 1.15013e7 0.139727
\(436\) 1.79736e8 2.16859
\(437\) 1.11716e7i 0.133866i
\(438\) −2.31574e8 −2.75593
\(439\) −2.96954e7 −0.350990 −0.175495 0.984480i \(-0.556153\pi\)
−0.175495 + 0.984480i \(0.556153\pi\)
\(440\) 2.22846e7i 0.261606i
\(441\) 1.70804e7 0.199150
\(442\) −8.77701e7 −1.01643
\(443\) 4.05180e7 0.466055 0.233027 0.972470i \(-0.425137\pi\)
0.233027 + 0.972470i \(0.425137\pi\)
\(444\) −2.23961e8 −2.55872
\(445\) 4.34308e7i 0.492854i
\(446\) 1.96242e8i 2.21201i
\(447\) 1.26633e8i 1.41783i
\(448\) −6.73359e7 −0.748881
\(449\) 3.78355e6i 0.0417985i −0.999782 0.0208993i \(-0.993347\pi\)
0.999782 0.0208993i \(-0.00665292\pi\)
\(450\) −1.46954e7 −0.161266
\(451\) 5.10400e7i 0.556392i
\(452\) 2.03101e8 2.19936
\(453\) 1.36715e8 1.47069
\(454\) −1.54219e8 −1.64805
\(455\) 5.11795e7i 0.543328i
\(456\) 3.20451e7i 0.337961i
\(457\) 3.10449e6i 0.0325268i 0.999868 + 0.0162634i \(0.00517703\pi\)
−0.999868 + 0.0162634i \(0.994823\pi\)
\(458\) 1.80037e8i 1.87398i
\(459\) 3.53517e7 0.365572
\(460\) 3.03601e7i 0.311910i
\(461\) 6.13002e7i 0.625690i −0.949804 0.312845i \(-0.898718\pi\)
0.949804 0.312845i \(-0.101282\pi\)
\(462\) 4.27122e7 0.433138
\(463\) 1.95894e8i 1.97369i 0.161669 + 0.986845i \(0.448312\pi\)
−0.161669 + 0.986845i \(0.551688\pi\)
\(464\) 6.68144e6i 0.0668831i
\(465\) −7.59842e7 + 4.22353e7i −0.755726 + 0.420065i
\(466\) 8.73336e7 0.863026
\(467\) −9.08367e7 −0.891889 −0.445945 0.895061i \(-0.647132\pi\)
−0.445945 + 0.895061i \(0.647132\pi\)
\(468\) 5.54251e7i 0.540716i
\(469\) 1.60937e7 0.156005
\(470\) −1.84773e8 −1.77969
\(471\) 2.19051e8i 2.09645i
\(472\) −2.11230e7 −0.200877
\(473\) 2.94728e7 0.278508
\(474\) 3.84149e7 0.360715
\(475\) 2.03218e7 0.189619
\(476\) 3.15905e7i 0.292911i
\(477\) 3.73858e7i 0.344470i
\(478\) 2.20044e8i 2.01477i
\(479\) 1.45950e8 1.32800 0.664000 0.747733i \(-0.268858\pi\)
0.664000 + 0.747733i \(0.268858\pi\)
\(480\) 1.23063e8i 1.11277i
\(481\) −2.67908e8 −2.40741
\(482\) 8.40330e7i 0.750428i
\(483\) 1.70490e7 0.151306
\(484\) 1.15882e8 1.02207
\(485\) −3.29725e7 −0.289019
\(486\) 8.93474e7i 0.778347i
\(487\) 8.85482e7i 0.766642i 0.923615 + 0.383321i \(0.125220\pi\)
−0.923615 + 0.383321i \(0.874780\pi\)
\(488\) 1.27668e8i 1.09856i
\(489\) 4.91336e7i 0.420196i
\(490\) 1.09573e8 0.931359
\(491\) 7.46263e7i 0.630445i −0.949018 0.315223i \(-0.897921\pi\)
0.949018 0.315223i \(-0.102079\pi\)
\(492\) 1.99460e8i 1.67479i
\(493\) −8.49222e6 −0.0708729
\(494\) 1.30836e8i 1.08529i
\(495\) 1.26295e7i 0.104129i
\(496\) −2.45357e7 4.41414e7i −0.201073 0.361744i
\(497\) 3.52607e7 0.287225
\(498\) 1.43085e8 1.15853
\(499\) 1.82186e8i 1.46626i 0.680086 + 0.733132i \(0.261942\pi\)
−0.680086 + 0.733132i \(0.738058\pi\)
\(500\) −1.91611e8 −1.53289
\(501\) 8.76771e7 0.697225
\(502\) 3.09047e8i 2.44294i
\(503\) 8.98350e7 0.705897 0.352949 0.935643i \(-0.385179\pi\)
0.352949 + 0.935643i \(0.385179\pi\)
\(504\) 9.97704e6 0.0779310
\(505\) −1.07952e8 −0.838216
\(506\) −3.03090e7 −0.233949
\(507\) 1.78912e8i 1.37282i
\(508\) 2.97615e8i 2.27019i
\(509\) 2.08422e8i 1.58049i −0.612793 0.790243i \(-0.709954\pi\)
0.612793 0.790243i \(-0.290046\pi\)
\(510\) −7.81577e7 −0.589198
\(511\) 9.97042e7i 0.747224i
\(512\) −1.07260e8 −0.799146
\(513\) 5.26975e7i 0.390336i
\(514\) 1.91654e8 1.41133
\(515\) 7.67239e7 0.561706
\(516\) 1.15177e8 0.838333
\(517\) 1.08062e8i 0.781987i
\(518\) 1.64601e8i 1.18425i
\(519\) 9.02419e7i 0.645514i
\(520\) 1.04175e8i 0.740889i
\(521\) −1.72718e8 −1.22131 −0.610653 0.791898i \(-0.709093\pi\)
−0.610653 + 0.791898i \(0.709093\pi\)
\(522\) 9.15415e6i 0.0643586i
\(523\) 1.77241e7i 0.123896i 0.998079 + 0.0619482i \(0.0197314\pi\)
−0.998079 + 0.0619482i \(0.980269\pi\)
\(524\) 3.00913e8 2.09144
\(525\) 3.10133e7i 0.214323i
\(526\) 3.70875e8i 2.54842i
\(527\) 5.61044e7 3.11853e7i 0.383323 0.213068i
\(528\) 3.59628e7 0.244316
\(529\) 1.35938e8 0.918276
\(530\) 2.39836e8i 1.61097i
\(531\) −1.19712e7 −0.0799566
\(532\) −4.70908e7 −0.312753
\(533\) 2.38599e8i 1.57575i
\(534\) −1.69439e8 −1.11273
\(535\) 1.08989e8 0.711740
\(536\) −3.27585e7 −0.212730
\(537\) 5.44531e7 0.351641
\(538\) 1.94444e8i 1.24867i
\(539\) 6.40823e7i 0.409234i
\(540\) 1.43212e8i 0.909490i
\(541\) −1.69646e8 −1.07140 −0.535700 0.844408i \(-0.679952\pi\)
−0.535700 + 0.844408i \(0.679952\pi\)
\(542\) 2.17920e8i 1.36867i
\(543\) −3.09713e8 −1.93446
\(544\) 9.08663e7i 0.564425i
\(545\) 1.91458e8 1.18273
\(546\) 1.99669e8 1.22668
\(547\) −1.40402e8 −0.857852 −0.428926 0.903340i \(-0.641108\pi\)
−0.428926 + 0.903340i \(0.641108\pi\)
\(548\) 1.25512e8i 0.762683i
\(549\) 7.23543e7i 0.437268i
\(550\) 5.51343e7i 0.331385i
\(551\) 1.26590e7i 0.0756738i
\(552\) −3.47029e7 −0.206323
\(553\) 1.65395e7i 0.0978019i
\(554\) 1.91852e8i 1.12833i
\(555\) −2.38567e8 −1.39551
\(556\) 1.85923e8i 1.08171i
\(557\) 1.61216e8i 0.932914i −0.884544 0.466457i \(-0.845530\pi\)
0.884544 0.466457i \(-0.154470\pi\)
\(558\) 3.36160e7 + 6.04775e7i 0.193483 + 0.348090i
\(559\) 1.37778e8 0.788757
\(560\) −2.64755e7 −0.150758
\(561\) 4.57093e7i 0.258890i
\(562\) −5.43497e7 −0.306188
\(563\) 2.83735e8 1.58997 0.794984 0.606631i \(-0.207479\pi\)
0.794984 + 0.606631i \(0.207479\pi\)
\(564\) 4.22295e8i 2.35385i
\(565\) 2.16347e8 1.19951
\(566\) −2.30546e8 −1.27148
\(567\) −1.02483e8 −0.562217
\(568\) −7.17724e7 −0.391663
\(569\) 2.13052e7i 0.115651i 0.998327 + 0.0578255i \(0.0184167\pi\)
−0.998327 + 0.0578255i \(0.981583\pi\)
\(570\) 1.16507e8i 0.629110i
\(571\) 1.64435e8i 0.883252i 0.897199 + 0.441626i \(0.145598\pi\)
−0.897199 + 0.441626i \(0.854402\pi\)
\(572\) −2.07944e8 −1.11112
\(573\) 1.80546e8i 0.959677i
\(574\) 1.46594e8 0.775140
\(575\) 2.20073e7i 0.115761i
\(576\) 7.76776e7 0.406470
\(577\) 1.12083e8 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(578\) −2.42337e8 −1.25498
\(579\) 9.97526e6i 0.0513912i
\(580\) 3.44025e7i 0.176322i
\(581\) 6.16052e7i 0.314115i
\(582\) 1.28637e8i 0.652525i
\(583\) 1.40264e8 0.707851
\(584\) 2.02946e8i 1.01892i
\(585\) 5.90398e7i 0.294902i
\(586\) −2.75268e8 −1.36793
\(587\) 4.68196e7i 0.231480i 0.993280 + 0.115740i \(0.0369239\pi\)
−0.993280 + 0.115740i \(0.963076\pi\)
\(588\) 2.50428e8i 1.23183i
\(589\) −4.64867e7 8.36328e7i −0.227501 0.409289i
\(590\) −7.67974e7 −0.373930
\(591\) −9.20008e7 −0.445686
\(592\) 1.38590e8i 0.667987i
\(593\) −9.33451e7 −0.447639 −0.223819 0.974631i \(-0.571853\pi\)
−0.223819 + 0.974631i \(0.571853\pi\)
\(594\) 1.42971e8 0.682165
\(595\) 3.36508e7i 0.159751i
\(596\) −3.78782e8 −1.78916
\(597\) −3.34852e7 −0.157373
\(598\) −1.41687e8 −0.662562
\(599\) 3.65248e8 1.69945 0.849724 0.527228i \(-0.176769\pi\)
0.849724 + 0.527228i \(0.176769\pi\)
\(600\) 6.31269e7i 0.292254i
\(601\) 2.51694e8i 1.15944i 0.814814 + 0.579722i \(0.196839\pi\)
−0.814814 + 0.579722i \(0.803161\pi\)
\(602\) 8.46497e7i 0.388004i
\(603\) −1.85654e7 −0.0846747
\(604\) 4.08938e8i 1.85586i
\(605\) 1.23440e8 0.557428
\(606\) 4.21157e8i 1.89246i
\(607\) −1.80742e8 −0.808152 −0.404076 0.914725i \(-0.632407\pi\)
−0.404076 + 0.914725i \(0.632407\pi\)
\(608\) −1.35451e8 −0.602659
\(609\) 1.93190e7 0.0855329
\(610\) 4.64165e8i 2.04495i
\(611\) 5.05160e8i 2.21465i
\(612\) 3.64423e7i 0.158983i
\(613\) 3.70931e7i 0.161032i 0.996753 + 0.0805160i \(0.0256568\pi\)
−0.996753 + 0.0805160i \(0.974343\pi\)
\(614\) −2.42707e8 −1.04852
\(615\) 2.12468e8i 0.913416i
\(616\) 3.74320e7i 0.160140i
\(617\) −2.08022e8 −0.885634 −0.442817 0.896612i \(-0.646021\pi\)
−0.442817 + 0.896612i \(0.646021\pi\)
\(618\) 2.99326e8i 1.26818i
\(619\) 4.34198e8i 1.83069i −0.402665 0.915347i \(-0.631916\pi\)
0.402665 0.915347i \(-0.368084\pi\)
\(620\) 1.26333e8 + 2.27282e8i 0.530082 + 0.953653i
\(621\) 5.70682e7 0.238298
\(622\) 4.74010e8 1.96977
\(623\) 7.29517e7i 0.301697i
\(624\) 1.68117e8 0.691923
\(625\) −1.05246e8 −0.431087
\(626\) 2.30630e8i 0.940141i
\(627\) 6.81371e7 0.276427
\(628\) 6.55222e8 2.64551
\(629\) 1.76151e8 0.707835
\(630\) 3.62737e7 0.145068
\(631\) 1.26121e8i 0.501996i 0.967988 + 0.250998i \(0.0807587\pi\)
−0.967988 + 0.250998i \(0.919241\pi\)
\(632\) 3.36659e7i 0.133364i
\(633\) 1.82498e8i 0.719526i
\(634\) −4.59408e7 −0.180273
\(635\) 3.17025e8i 1.23815i
\(636\) 5.48141e8 2.13069
\(637\) 2.99568e8i 1.15898i
\(638\) −3.43446e7 −0.132250
\(639\) −4.06761e7 −0.155897
\(640\) 2.38061e8 0.908129
\(641\) 3.12607e6i 0.0118693i 0.999982 + 0.00593465i \(0.00188907\pi\)
−0.999982 + 0.00593465i \(0.998111\pi\)
\(642\) 4.25204e8i 1.60691i
\(643\) 1.01491e7i 0.0381763i −0.999818 0.0190881i \(-0.993924\pi\)
0.999818 0.0190881i \(-0.00607631\pi\)
\(644\) 5.09965e7i 0.190934i
\(645\) 1.22689e8 0.457220
\(646\) 8.60250e7i 0.319100i
\(647\) 5.23282e8i 1.93207i 0.258407 + 0.966036i \(0.416802\pi\)
−0.258407 + 0.966036i \(0.583198\pi\)
\(648\) 2.08603e8 0.766647
\(649\) 4.49137e7i 0.164303i
\(650\) 2.57739e8i 0.938511i
\(651\) −1.27632e8 + 7.09436e7i −0.462613 + 0.257140i
\(652\) −1.46967e8 −0.530246
\(653\) −3.31293e8 −1.18980 −0.594898 0.803801i \(-0.702808\pi\)
−0.594898 + 0.803801i \(0.702808\pi\)
\(654\) 7.46945e8i 2.67027i
\(655\) 3.20537e8 1.14066
\(656\) 1.23429e8 0.437225
\(657\) 1.15017e8i 0.405570i
\(658\) −3.10367e8 −1.08943
\(659\) −4.26424e8 −1.49000 −0.744999 0.667066i \(-0.767550\pi\)
−0.744999 + 0.667066i \(0.767550\pi\)
\(660\) −1.85171e8 −0.644082
\(661\) −1.66151e7 −0.0575306 −0.0287653 0.999586i \(-0.509158\pi\)
−0.0287653 + 0.999586i \(0.509158\pi\)
\(662\) 5.81143e8i 2.00313i
\(663\) 2.13679e8i 0.733199i
\(664\) 1.25396e8i 0.428332i
\(665\) −5.01620e7 −0.170573
\(666\) 1.89881e8i 0.642774i
\(667\) −1.37090e7 −0.0461984
\(668\) 2.62258e8i 0.879830i
\(669\) −4.77757e8 −1.59562
\(670\) −1.19101e8 −0.395995
\(671\) −2.71460e8 −0.898540
\(672\) 2.06712e8i 0.681175i
\(673\) 5.71367e8i 1.87443i 0.348748 + 0.937217i \(0.386607\pi\)
−0.348748 + 0.937217i \(0.613393\pi\)
\(674\) 8.71189e7i 0.284533i
\(675\) 1.03811e8i 0.337546i
\(676\) −5.35157e8 −1.73237
\(677\) 3.74084e8i 1.20560i 0.797892 + 0.602800i \(0.205948\pi\)
−0.797892 + 0.602800i \(0.794052\pi\)
\(678\) 8.44042e8i 2.70817i
\(679\) −5.53847e7 −0.176921
\(680\) 6.84955e7i 0.217839i
\(681\) 3.75451e8i 1.18881i
\(682\) 2.26900e8 1.26121e8i 0.715289 0.397589i
\(683\) −3.66698e8 −1.15092 −0.575462 0.817829i \(-0.695178\pi\)
−0.575462 + 0.817829i \(0.695178\pi\)
\(684\) 5.43231e7 0.169753
\(685\) 1.33698e8i 0.415961i
\(686\) 4.20924e8 1.30386
\(687\) 4.38306e8 1.35179
\(688\) 7.12733e7i 0.218858i
\(689\) 6.55700e8 2.00469
\(690\) −1.26170e8 −0.384068
\(691\) −3.65697e8 −1.10838 −0.554189 0.832391i \(-0.686971\pi\)
−0.554189 + 0.832391i \(0.686971\pi\)
\(692\) −2.69929e8 −0.814576
\(693\) 2.12141e7i 0.0637419i
\(694\) 3.07569e8i 0.920162i
\(695\) 1.98049e8i 0.589954i
\(696\) −3.93235e7 −0.116634
\(697\) 1.56880e8i 0.463308i
\(698\) 8.25220e8 2.42663
\(699\) 2.12617e8i 0.622538i
\(700\) −9.27662e7 −0.270455
\(701\) −4.28201e8 −1.24307 −0.621533 0.783388i \(-0.713490\pi\)
−0.621533 + 0.783388i \(0.713490\pi\)
\(702\) 6.68354e8 1.93195
\(703\) 2.62581e8i 0.755784i
\(704\) 2.91432e8i 0.835254i
\(705\) 4.49836e8i 1.28377i
\(706\) 2.50900e8i 0.712996i
\(707\) −1.81329e8 −0.513108
\(708\) 1.75519e8i 0.494566i
\(709\) 1.43971e8i 0.403958i −0.979390 0.201979i \(-0.935263\pi\)
0.979390 0.201979i \(-0.0647372\pi\)
\(710\) −2.60944e8 −0.729076
\(711\) 1.90797e7i 0.0530839i
\(712\) 1.48492e8i 0.411398i
\(713\) 9.05692e7 5.03423e7i 0.249869 0.138888i
\(714\) −1.31283e8 −0.360674
\(715\) −2.21506e8 −0.605993
\(716\) 1.62879e8i 0.443737i
\(717\) 5.35704e8 1.45334
\(718\) −4.35937e8 −1.17774
\(719\) 3.14785e8i 0.846890i −0.905922 0.423445i \(-0.860821\pi\)
0.905922 0.423445i \(-0.139179\pi\)
\(720\) 3.05417e7 0.0818268
\(721\) 1.28875e8 0.343845
\(722\) 4.56578e8 1.21312
\(723\) 2.04581e8 0.541316
\(724\) 9.26405e8i 2.44110i
\(725\) 2.49376e7i 0.0654395i
\(726\) 4.81581e8i 1.25852i
\(727\) 2.93434e8 0.763672 0.381836 0.924230i \(-0.375292\pi\)
0.381836 + 0.924230i \(0.375292\pi\)
\(728\) 1.74985e8i 0.453531i
\(729\) −2.43748e8 −0.629155
\(730\) 7.37854e8i 1.89671i
\(731\) −9.05895e7 −0.231913
\(732\) −1.06084e9 −2.70468
\(733\) 3.06484e8 0.778209 0.389104 0.921194i \(-0.372785\pi\)
0.389104 + 0.921194i \(0.372785\pi\)
\(734\) 1.04601e9i 2.64514i
\(735\) 2.66760e8i 0.671830i
\(736\) 1.46685e8i 0.367920i
\(737\) 6.96540e7i 0.173998i
\(738\) −1.69108e8 −0.420722
\(739\) 2.31247e8i 0.572985i 0.958083 + 0.286492i \(0.0924893\pi\)
−0.958083 + 0.286492i \(0.907511\pi\)
\(740\) 7.13596e8i 1.76099i
\(741\) 3.18524e8 0.782866
\(742\) 4.02858e8i 0.986145i
\(743\) 2.72360e7i 0.0664015i −0.999449 0.0332007i \(-0.989430\pi\)
0.999449 0.0332007i \(-0.0105701\pi\)
\(744\) 2.59793e8 1.44404e8i 0.630825 0.350640i
\(745\) −4.03485e8 −0.975796
\(746\) −1.36386e8 −0.328514
\(747\) 7.10667e7i 0.170492i
\(748\) 1.36724e8 0.326694
\(749\) 1.83071e8 0.435687
\(750\) 7.96294e8i 1.88751i
\(751\) 4.15738e8 0.981522 0.490761 0.871294i \(-0.336719\pi\)
0.490761 + 0.871294i \(0.336719\pi\)
\(752\) −2.61323e8 −0.614502
\(753\) −7.52385e8 −1.76220
\(754\) −1.60552e8 −0.374544
\(755\) 4.35608e8i 1.01217i
\(756\) 2.40556e8i 0.556738i
\(757\) 2.03280e8i 0.468606i −0.972164 0.234303i \(-0.924719\pi\)
0.972164 0.234303i \(-0.0752807\pi\)
\(758\) 6.12409e8 1.40616
\(759\) 7.37884e7i 0.168757i
\(760\) 1.02104e8 0.232595
\(761\) 3.21760e7i 0.0730092i 0.999333 + 0.0365046i \(0.0116224\pi\)
−0.999333 + 0.0365046i \(0.988378\pi\)
\(762\) −1.23682e9 −2.79539
\(763\) 3.21597e8 0.724000
\(764\) 5.40046e8 1.21102
\(765\) 3.88190e7i 0.0867081i
\(766\) 1.26737e8i 0.281980i
\(767\) 2.09960e8i 0.465319i
\(768\) 1.23546e8i 0.272739i
\(769\) −2.43944e8 −0.536428 −0.268214 0.963359i \(-0.586433\pi\)
−0.268214 + 0.963359i \(0.586433\pi\)
\(770\) 1.36092e8i 0.298099i
\(771\) 4.66588e8i 1.01805i
\(772\) 2.98378e7 0.0648506
\(773\) 9.60716e7i 0.207997i 0.994577 + 0.103998i \(0.0331637\pi\)
−0.994577 + 0.103998i \(0.966836\pi\)
\(774\) 9.76505e7i 0.210597i
\(775\) −9.15762e7 1.64752e8i −0.196733 0.353936i
\(776\) 1.12734e8 0.241252
\(777\) −4.00726e8 −0.854250
\(778\) 8.56619e8i 1.81907i
\(779\) 2.33855e8 0.494692
\(780\) −8.65627e8 −1.82409
\(781\) 1.52609e8i 0.320352i
\(782\) 9.31599e7 0.194809
\(783\) 6.46668e7 0.134709
\(784\) 1.54969e8 0.321585
\(785\) 6.97954e8 1.44284
\(786\) 1.25053e9i 2.57529i
\(787\) 7.60481e8i 1.56014i −0.625691 0.780071i \(-0.715183\pi\)
0.625691 0.780071i \(-0.284817\pi\)
\(788\) 2.75190e8i 0.562412i
\(789\) 9.02909e8 1.83829
\(790\) 1.22400e8i 0.248256i
\(791\) 3.63402e8 0.734274
\(792\) 4.31809e7i 0.0869193i
\(793\) −1.26900e9 −2.54474
\(794\) −1.28061e9 −2.55832
\(795\) 5.83890e8 1.16206
\(796\) 1.00160e8i 0.198589i
\(797\) 7.57082e8i 1.49544i −0.664016 0.747718i \(-0.731150\pi\)
0.664016 0.747718i \(-0.268850\pi\)
\(798\) 1.95699e8i 0.385106i
\(799\) 3.32145e8i 0.651160i
\(800\) −2.66831e8 −0.521154
\(801\) 8.41559e7i 0.163752i
\(802\) 1.36602e9i 2.64809i
\(803\) 4.31522e8 0.833406
\(804\) 2.72202e8i 0.523749i
\(805\) 5.43224e7i 0.104134i
\(806\) 1.06070e9 5.89583e8i 2.02576 1.12600i
\(807\) −4.73381e8 −0.900722
\(808\) 3.69092e8 0.699682
\(809\) 1.97025e8i 0.372114i 0.982539 + 0.186057i \(0.0595709\pi\)
−0.982539 + 0.186057i \(0.940429\pi\)
\(810\) 7.58422e8 1.42710
\(811\) 6.36301e8 1.19289 0.596444 0.802654i \(-0.296580\pi\)
0.596444 + 0.802654i \(0.296580\pi\)
\(812\) 5.77866e7i 0.107934i
\(813\) 5.30533e8 0.987281
\(814\) 7.12397e8 1.32084
\(815\) −1.56552e8 −0.289192
\(816\) −1.10538e8 −0.203442
\(817\) 1.35038e8i 0.247623i
\(818\) 7.52194e7i 0.137426i
\(819\) 9.91705e7i 0.180522i
\(820\) −6.35530e8 −1.15264
\(821\) 7.06468e8i 1.27662i −0.769778 0.638312i \(-0.779633\pi\)
0.769778 0.638312i \(-0.220367\pi\)
\(822\) 5.21601e8 0.939124
\(823\) 2.47665e8i 0.444288i −0.975014 0.222144i \(-0.928694\pi\)
0.975014 0.222144i \(-0.0713056\pi\)
\(824\) −2.62322e8 −0.468871
\(825\) 1.34226e8 0.239043
\(826\) −1.28998e8 −0.228899
\(827\) 1.04907e9i 1.85476i 0.374119 + 0.927381i \(0.377945\pi\)
−0.374119 + 0.927381i \(0.622055\pi\)
\(828\) 5.88287e7i 0.103633i
\(829\) 4.90830e8i 0.861525i −0.902465 0.430762i \(-0.858245\pi\)
0.902465 0.430762i \(-0.141755\pi\)
\(830\) 4.55905e8i 0.797334i
\(831\) 4.67070e8 0.813915
\(832\) 1.36237e9i 2.36551i
\(833\) 1.96968e8i 0.340769i
\(834\) −7.72657e8 −1.33195
\(835\) 2.79362e8i 0.479852i
\(836\) 2.03810e8i 0.348825i
\(837\) −4.27225e8 + 2.37470e8i −0.728586 + 0.404980i
\(838\) 2.15852e8 0.366795
\(839\) −3.36732e8 −0.570162 −0.285081 0.958503i \(-0.592021\pi\)
−0.285081 + 0.958503i \(0.592021\pi\)
\(840\) 1.55821e8i 0.262899i
\(841\) 5.79289e8 0.973884
\(842\) −1.28840e8 −0.215831
\(843\) 1.32316e8i 0.220867i
\(844\) −5.45883e8 −0.907971
\(845\) −5.70059e8 −0.944821
\(846\) 3.58034e8 0.591308
\(847\) 2.07345e8 0.341226
\(848\) 3.39198e8i 0.556245i
\(849\) 5.61272e8i 0.917170i
\(850\) 1.69464e8i 0.275944i
\(851\) 2.84360e8 0.461402
\(852\) 5.96383e8i 0.964287i
\(853\) −2.30588e8 −0.371527 −0.185763 0.982595i \(-0.559476\pi\)
−0.185763 + 0.982595i \(0.559476\pi\)
\(854\) 7.79669e8i 1.25180i
\(855\) 5.78660e7 0.0925817
\(856\) −3.72638e8 −0.594109
\(857\) −1.21910e9 −1.93685 −0.968426 0.249302i \(-0.919799\pi\)
−0.968426 + 0.249302i \(0.919799\pi\)
\(858\) 8.64172e8i 1.36816i
\(859\) 1.00776e9i 1.58993i −0.606653 0.794967i \(-0.707488\pi\)
0.606653 0.794967i \(-0.292512\pi\)
\(860\) 3.66983e8i 0.576967i
\(861\) 3.56888e8i 0.559142i
\(862\) −3.69564e8 −0.576989
\(863\) 6.15762e8i 0.958033i −0.877806 0.479017i \(-0.840993\pi\)
0.877806 0.479017i \(-0.159007\pi\)
\(864\) 6.91931e8i 1.07281i
\(865\) −2.87534e8 −0.444263
\(866\) 1.49477e7i 0.0230155i
\(867\) 5.89978e8i 0.905271i
\(868\) 2.12205e8 + 3.81771e8i 0.324486 + 0.583772i
\(869\) −7.15835e7 −0.109082
\(870\) −1.42969e8 −0.217112
\(871\) 3.25615e8i 0.492776i
\(872\) −6.54605e8 −0.987256
\(873\) 6.38908e7 0.0960275
\(874\) 1.38870e8i 0.208005i
\(875\) −3.42844e8 −0.511768
\(876\) 1.68635e9 2.50862
\(877\) 7.94493e7 0.117785 0.0588926 0.998264i \(-0.481243\pi\)
0.0588926 + 0.998264i \(0.481243\pi\)
\(878\) 3.69134e8 0.545381
\(879\) 6.70149e8i 0.986744i
\(880\) 1.14587e8i 0.168146i
\(881\) 1.08793e9i 1.59101i 0.605950 + 0.795503i \(0.292793\pi\)
−0.605950 + 0.795503i \(0.707207\pi\)
\(882\) −2.12320e8 −0.309447
\(883\) 4.58699e8i 0.666263i 0.942880 + 0.333132i \(0.108105\pi\)
−0.942880 + 0.333132i \(0.891895\pi\)
\(884\) 6.39152e8 0.925225
\(885\) 1.86966e8i 0.269732i
\(886\) −5.03666e8 −0.724172
\(887\) −1.05661e9 −1.51406 −0.757030 0.653380i \(-0.773350\pi\)
−0.757030 + 0.653380i \(0.773350\pi\)
\(888\) 8.15671e8 1.16487
\(889\) 5.32513e8i 0.757923i
\(890\) 5.39875e8i 0.765813i
\(891\) 4.43551e8i 0.627062i
\(892\) 1.42906e9i 2.01351i
\(893\) −4.95117e8 −0.695269
\(894\) 1.57413e9i 2.20307i
\(895\) 1.73502e8i 0.242011i
\(896\) 3.99876e8 0.555905
\(897\) 3.44942e8i 0.477935i
\(898\) 4.70321e7i 0.0649480i
\(899\) 1.02628e8 5.70453e7i 0.141250 0.0785128i
\(900\) 1.07013e8 0.146795
\(901\) −4.31126e8 −0.589427
\(902\) 6.34462e8i 0.864542i
\(903\) 2.06083e8 0.279884
\(904\) −7.39698e8 −1.00127
\(905\) 9.86824e8i 1.33135i
\(906\) −1.69946e9 −2.28521
\(907\) 1.36896e9 1.83471 0.917355 0.398069i \(-0.130320\pi\)
0.917355 + 0.398069i \(0.130320\pi\)
\(908\) 1.12304e9 1.50016
\(909\) 2.09178e8 0.278500
\(910\) 6.36196e8i 0.844242i
\(911\) 2.49994e7i 0.0330655i 0.999863 + 0.0165327i \(0.00526277\pi\)
−0.999863 + 0.0165327i \(0.994737\pi\)
\(912\) 1.64774e8i 0.217223i
\(913\) −2.66629e8 −0.350344
\(914\) 3.85909e7i 0.0505413i
\(915\) −1.13003e9 −1.47511
\(916\) 1.31105e9i 1.70582i
\(917\) 5.38414e8 0.698246
\(918\) −4.39446e8 −0.568038
\(919\) −7.94410e8 −1.02352 −0.511762 0.859127i \(-0.671007\pi\)
−0.511762 + 0.859127i \(0.671007\pi\)
\(920\) 1.10572e8i 0.141998i
\(921\) 5.90879e8i 0.756344i
\(922\) 7.62002e8i 0.972218i
\(923\) 7.13409e8i 0.907263i
\(924\) −3.11036e8 −0.394270
\(925\) 5.17270e8i 0.653570i
\(926\) 2.43510e9i 3.06679i
\(927\) −1.48668e8 −0.186628
\(928\) 1.66216e8i 0.207984i
\(929\) 1.95534e8i 0.243880i −0.992537 0.121940i \(-0.961088\pi\)
0.992537 0.121940i \(-0.0389115\pi\)
\(930\) 9.44535e8 5.25014e8i 1.17427 0.652712i
\(931\) 2.93612e8 0.363853
\(932\) −6.35974e8 −0.785582
\(933\) 1.15399e9i 1.42088i
\(934\) 1.12916e9 1.38585
\(935\) 1.45641e8 0.178176
\(936\) 2.01860e8i 0.246163i
\(937\) 6.58304e7 0.0800217 0.0400108 0.999199i \(-0.487261\pi\)
0.0400108 + 0.999199i \(0.487261\pi\)
\(938\) −2.00056e8 −0.242406
\(939\) −5.61477e8 −0.678165
\(940\) 1.34554e9 1.61999
\(941\) 1.66149e8i 0.199402i 0.995017 + 0.0997008i \(0.0317885\pi\)
−0.995017 + 0.0997008i \(0.968211\pi\)
\(942\) 2.72296e9i 3.25753i
\(943\) 2.53251e8i 0.302006i
\(944\) −1.08614e8 −0.129113
\(945\) 2.56245e8i 0.303641i
\(946\) −3.66366e8 −0.432755
\(947\) 1.32111e9i 1.55557i 0.628532 + 0.777784i \(0.283656\pi\)
−0.628532 + 0.777784i \(0.716344\pi\)
\(948\) −2.79742e8 −0.328347
\(949\) 2.01726e9 2.36027
\(950\) −2.52614e8 −0.294637
\(951\) 1.11844e8i 0.130039i
\(952\) 1.15053e8i 0.133349i
\(953\) 1.12882e9i 1.30421i −0.758130 0.652103i \(-0.773887\pi\)
0.758130 0.652103i \(-0.226113\pi\)
\(954\) 4.64731e8i 0.535249i
\(955\) 5.75267e8 0.660480
\(956\) 1.60239e9i 1.83398i
\(957\) 8.36132e7i 0.0953979i
\(958\) −1.81426e9 −2.06349
\(959\) 2.24575e8i 0.254628i
\(960\) 1.21317e9i 1.37122i
\(961\) −4.68538e8 + 7.53747e8i −0.527928 + 0.849289i
\(962\) 3.33027e9 3.74072
\(963\) −2.11188e8 −0.236478
\(964\) 6.11939e8i 0.683088i
\(965\) 3.17837e7 0.0353690
\(966\) −2.11930e8 −0.235105
\(967\) 1.00049e9i 1.10645i −0.833032 0.553225i \(-0.813397\pi\)
0.833032 0.553225i \(-0.186603\pi\)
\(968\) −4.22046e8 −0.465301
\(969\) −2.09431e8 −0.230181
\(970\) 4.09871e8 0.449088
\(971\) 1.18447e9 1.29379 0.646896 0.762578i \(-0.276067\pi\)
0.646896 + 0.762578i \(0.276067\pi\)
\(972\) 6.50638e8i 0.708502i
\(973\) 3.32667e8i 0.361136i
\(974\) 1.10071e9i 1.19124i
\(975\) 6.27473e8 0.676989
\(976\) 6.56464e8i 0.706093i
\(977\) −9.22899e8 −0.989624 −0.494812 0.869000i \(-0.664763\pi\)
−0.494812 + 0.869000i \(0.664763\pi\)
\(978\) 6.10764e8i 0.652915i
\(979\) 3.15737e8 0.336494
\(980\) −7.97927e8 −0.847784
\(981\) −3.70989e8 −0.392965
\(982\) 9.27655e8i 0.979607i
\(983\) 2.25206e8i 0.237094i 0.992948 + 0.118547i \(0.0378236\pi\)
−0.992948 + 0.118547i \(0.962176\pi\)
\(984\) 7.26438e8i 0.762453i
\(985\) 2.93138e8i 0.306735i
\(986\) 1.05564e8 0.110125
\(987\) 7.55600e8i 0.785851i
\(988\) 9.52761e8i 0.987900i
\(989\) −1.46238e8 −0.151172
\(990\) 1.56994e8i 0.161799i
\(991\) 1.20205e9i 1.23510i 0.786532 + 0.617549i \(0.211874\pi\)
−0.786532 + 0.617549i \(0.788126\pi\)
\(992\) 6.10382e8 + 1.09812e9i 0.625268 + 1.12490i
\(993\) 1.41481e9 1.44494
\(994\) −4.38314e8 −0.446299
\(995\) 1.06692e8i 0.108309i
\(996\) −1.04196e9 −1.05457
\(997\) −4.96926e8 −0.501425 −0.250713 0.968062i \(-0.580665\pi\)
−0.250713 + 0.968062i \(0.580665\pi\)
\(998\) 2.26469e9i 2.27833i
\(999\) −1.34136e9 −1.34539
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.7.b.c.30.2 yes 12
3.2 odd 2 279.7.d.f.154.11 12
4.3 odd 2 496.7.e.c.433.4 12
31.30 odd 2 inner 31.7.b.c.30.1 12
93.92 even 2 279.7.d.f.154.12 12
124.123 even 2 496.7.e.c.433.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.7.b.c.30.1 12 31.30 odd 2 inner
31.7.b.c.30.2 yes 12 1.1 even 1 trivial
279.7.d.f.154.11 12 3.2 odd 2
279.7.d.f.154.12 12 93.92 even 2
496.7.e.c.433.4 12 4.3 odd 2
496.7.e.c.433.9 12 124.123 even 2