Properties

Label 2-3042-13.12-c1-0-46
Degree $2$
Conductor $3042$
Sign $-0.722 + 0.691i$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s − 3.60i·5-s + 1.10i·7-s + i·8-s − 3.60·10-s + 2.35i·11-s + 1.10·14-s + 16-s + 5.96·17-s − 0.911i·19-s + 3.60i·20-s + 2.35·22-s + 3.38·23-s − 7.98·25-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 1.61i·5-s + 0.419i·7-s + 0.353i·8-s − 1.13·10-s + 0.710i·11-s + 0.296·14-s + 0.250·16-s + 1.44·17-s − 0.209i·19-s + 0.805i·20-s + 0.502·22-s + 0.705·23-s − 1.59·25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.722 + 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.722 + 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $-0.722 + 0.691i$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3042} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ -0.722 + 0.691i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.685254825\)
\(L(\frac12)\) \(\approx\) \(1.685254825\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 3.60iT - 5T^{2} \)
7 \( 1 - 1.10iT - 7T^{2} \)
11 \( 1 - 2.35iT - 11T^{2} \)
17 \( 1 - 5.96T + 17T^{2} \)
19 \( 1 + 0.911iT - 19T^{2} \)
23 \( 1 - 3.38T + 23T^{2} \)
29 \( 1 - 3.78T + 29T^{2} \)
31 \( 1 + 8.49iT - 31T^{2} \)
37 \( 1 - 4.89iT - 37T^{2} \)
41 \( 1 + 7.18iT - 41T^{2} \)
43 \( 1 - 0.515T + 43T^{2} \)
47 \( 1 + 6.98iT - 47T^{2} \)
53 \( 1 - 3.38T + 53T^{2} \)
59 \( 1 + 10.1iT - 59T^{2} \)
61 \( 1 + 0.439T + 61T^{2} \)
67 \( 1 + 2.14iT - 67T^{2} \)
71 \( 1 - 0.615iT - 71T^{2} \)
73 \( 1 - 6.32iT - 73T^{2} \)
79 \( 1 + 15.4T + 79T^{2} \)
83 \( 1 + 0.911iT - 83T^{2} \)
89 \( 1 + 3.75iT - 89T^{2} \)
97 \( 1 - 14.6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.526787140012080959869427783857, −8.004298292683919673737549713379, −7.06121571431104173999428407201, −5.76098085675854697040575154647, −5.24176371627898152662974912409, −4.53716738054647788713314899516, −3.74018401203051118316850230193, −2.56514887054693975881165220339, −1.54821710628673489351598543893, −0.62990410583433074933006344720, 1.15070178773017464160242653461, 2.86602282529951307294569035982, 3.30577722963224612401676361697, 4.29389173115548140476434215572, 5.45788621746613268574449227377, 6.06680641287520256933375771147, 6.86315943536191662314844371087, 7.34338486509996553470676692471, 8.029267647504042118271898359810, 8.861020552517146852524143233944

Graph of the $Z$-function along the critical line