Properties

Label 2-3024-63.47-c1-0-21
Degree $2$
Conductor $3024$
Sign $0.669 + 0.743i$
Analytic cond. $24.1467$
Root an. cond. $4.91393$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.36·5-s + (−2.64 + 0.0810i)7-s + 1.20i·11-s + (0.639 − 0.369i)13-s + (0.693 + 1.20i)17-s + (−2.81 − 1.62i)19-s + 3.81i·23-s − 3.12·25-s + (3.50 + 2.02i)29-s + (−1.02 − 0.594i)31-s + (3.61 − 0.110i)35-s + (5.10 − 8.84i)37-s + (0.670 + 1.16i)41-s + (0.490 − 0.848i)43-s + (−1.63 − 2.83i)47-s + ⋯
L(s)  = 1  − 0.611·5-s + (−0.999 + 0.0306i)7-s + 0.362i·11-s + (0.177 − 0.102i)13-s + (0.168 + 0.291i)17-s + (−0.646 − 0.373i)19-s + 0.794i·23-s − 0.625·25-s + (0.649 + 0.375i)29-s + (−0.184 − 0.106i)31-s + (0.611 − 0.0187i)35-s + (0.839 − 1.45i)37-s + (0.104 + 0.181i)41-s + (0.0747 − 0.129i)43-s + (−0.238 − 0.413i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.743i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.669 + 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $0.669 + 0.743i$
Analytic conductor: \(24.1467\)
Root analytic conductor: \(4.91393\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3024} (1601, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ 0.669 + 0.743i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.005937179\)
\(L(\frac12)\) \(\approx\) \(1.005937179\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2.64 - 0.0810i)T \)
good5 \( 1 + 1.36T + 5T^{2} \)
11 \( 1 - 1.20iT - 11T^{2} \)
13 \( 1 + (-0.639 + 0.369i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + (-0.693 - 1.20i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (2.81 + 1.62i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 - 3.81iT - 23T^{2} \)
29 \( 1 + (-3.50 - 2.02i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 + (1.02 + 0.594i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-5.10 + 8.84i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.670 - 1.16i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-0.490 + 0.848i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (1.63 + 2.83i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-5.77 + 3.33i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (6.73 - 11.6i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4.36 - 2.51i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-2.19 + 3.80i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 8.84iT - 71T^{2} \)
73 \( 1 + (-10.2 + 5.94i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (6.34 + 10.9i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (3.14 - 5.44i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-6.05 + 10.4i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-10.9 - 6.33i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.726966956813873423785283705609, −7.71940799588872875670484624264, −7.24957524818547092302423754213, −6.31240051208859581130480691007, −5.72500536017195451725587839779, −4.59312347973272564916033774481, −3.83182127041809948129967881072, −3.09552960461076154211585153533, −1.98139780032594801377114470399, −0.43941148402866954675184045149, 0.807316415895224040004694779853, 2.37318026666969728688633519330, 3.28467472120789233469447228395, 4.02164030382240798548493268779, 4.85018879750183161465550525182, 6.03895580044937547342841899901, 6.43553403118799513683551191404, 7.33714493937804368047029960757, 8.146575648254152656119400333239, 8.698690333075904525525211056257

Graph of the $Z$-function along the critical line