L(s) = 1 | − 1.36·5-s + (−2.64 + 0.0810i)7-s + 1.20i·11-s + (0.639 − 0.369i)13-s + (0.693 + 1.20i)17-s + (−2.81 − 1.62i)19-s + 3.81i·23-s − 3.12·25-s + (3.50 + 2.02i)29-s + (−1.02 − 0.594i)31-s + (3.61 − 0.110i)35-s + (5.10 − 8.84i)37-s + (0.670 + 1.16i)41-s + (0.490 − 0.848i)43-s + (−1.63 − 2.83i)47-s + ⋯ |
L(s) = 1 | − 0.611·5-s + (−0.999 + 0.0306i)7-s + 0.362i·11-s + (0.177 − 0.102i)13-s + (0.168 + 0.291i)17-s + (−0.646 − 0.373i)19-s + 0.794i·23-s − 0.625·25-s + (0.649 + 0.375i)29-s + (−0.184 − 0.106i)31-s + (0.611 − 0.0187i)35-s + (0.839 − 1.45i)37-s + (0.104 + 0.181i)41-s + (0.0747 − 0.129i)43-s + (−0.238 − 0.413i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.743i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.669 + 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.005937179\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.005937179\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.64 - 0.0810i)T \) |
good | 5 | \( 1 + 1.36T + 5T^{2} \) |
| 11 | \( 1 - 1.20iT - 11T^{2} \) |
| 13 | \( 1 + (-0.639 + 0.369i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.693 - 1.20i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.81 + 1.62i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 3.81iT - 23T^{2} \) |
| 29 | \( 1 + (-3.50 - 2.02i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.02 + 0.594i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.10 + 8.84i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.670 - 1.16i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.490 + 0.848i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.63 + 2.83i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.77 + 3.33i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.73 - 11.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.36 - 2.51i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.19 + 3.80i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.84iT - 71T^{2} \) |
| 73 | \( 1 + (-10.2 + 5.94i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.34 + 10.9i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.14 - 5.44i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.05 + 10.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.9 - 6.33i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.726966956813873423785283705609, −7.71940799588872875670484624264, −7.24957524818547092302423754213, −6.31240051208859581130480691007, −5.72500536017195451725587839779, −4.59312347973272564916033774481, −3.83182127041809948129967881072, −3.09552960461076154211585153533, −1.98139780032594801377114470399, −0.43941148402866954675184045149,
0.807316415895224040004694779853, 2.37318026666969728688633519330, 3.28467472120789233469447228395, 4.02164030382240798548493268779, 4.85018879750183161465550525182, 6.03895580044937547342841899901, 6.43553403118799513683551191404, 7.33714493937804368047029960757, 8.146575648254152656119400333239, 8.698690333075904525525211056257