L(s) = 1 | − 1.36·5-s + (−2.64 − 0.0810i)7-s − 1.20i·11-s + (0.639 + 0.369i)13-s + (0.693 − 1.20i)17-s + (−2.81 + 1.62i)19-s − 3.81i·23-s − 3.12·25-s + (3.50 − 2.02i)29-s + (−1.02 + 0.594i)31-s + (3.61 + 0.110i)35-s + (5.10 + 8.84i)37-s + (0.670 − 1.16i)41-s + (0.490 + 0.848i)43-s + (−1.63 + 2.83i)47-s + ⋯ |
L(s) = 1 | − 0.611·5-s + (−0.999 − 0.0306i)7-s − 0.362i·11-s + (0.177 + 0.102i)13-s + (0.168 − 0.291i)17-s + (−0.646 + 0.373i)19-s − 0.794i·23-s − 0.625·25-s + (0.649 − 0.375i)29-s + (−0.184 + 0.106i)31-s + (0.611 + 0.0187i)35-s + (0.839 + 1.45i)37-s + (0.104 − 0.181i)41-s + (0.0747 + 0.129i)43-s + (−0.238 + 0.413i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 - 0.743i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.669 - 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.005937179\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.005937179\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.64 + 0.0810i)T \) |
good | 5 | \( 1 + 1.36T + 5T^{2} \) |
| 11 | \( 1 + 1.20iT - 11T^{2} \) |
| 13 | \( 1 + (-0.639 - 0.369i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.693 + 1.20i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.81 - 1.62i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 3.81iT - 23T^{2} \) |
| 29 | \( 1 + (-3.50 + 2.02i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.02 - 0.594i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.10 - 8.84i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.670 + 1.16i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.490 - 0.848i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.63 - 2.83i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.77 - 3.33i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.73 + 11.6i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.36 + 2.51i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.19 - 3.80i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8.84iT - 71T^{2} \) |
| 73 | \( 1 + (-10.2 - 5.94i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.34 - 10.9i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.14 + 5.44i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.05 - 10.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.9 + 6.33i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.698690333075904525525211056257, −8.146575648254152656119400333239, −7.33714493937804368047029960757, −6.43553403118799513683551191404, −6.03895580044937547342841899901, −4.85018879750183161465550525182, −4.02164030382240798548493268779, −3.28467472120789233469447228395, −2.37318026666969728688633519330, −0.807316415895224040004694779853,
0.43941148402866954675184045149, 1.98139780032594801377114470399, 3.09552960461076154211585153533, 3.83182127041809948129967881072, 4.59312347973272564916033774481, 5.72500536017195451725587839779, 6.31240051208859581130480691007, 7.24957524818547092302423754213, 7.71940799588872875670484624264, 8.726966956813873423785283705609