Properties

Label 2-300-100.23-c1-0-5
Degree $2$
Conductor $300$
Sign $-0.964 - 0.263i$
Analytic cond. $2.39551$
Root an. cond. $1.54774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.210 + 1.39i)2-s + (0.453 + 0.891i)3-s + (−1.91 + 0.588i)4-s + (−0.590 + 2.15i)5-s + (−1.15 + 0.822i)6-s + (1.77 + 1.77i)7-s + (−1.22 − 2.54i)8-s + (−0.587 + 0.809i)9-s + (−3.14 − 0.371i)10-s + (0.582 + 0.801i)11-s + (−1.39 − 1.43i)12-s + (−0.710 − 4.48i)13-s + (−2.10 + 2.85i)14-s + (−2.18 + 0.453i)15-s + (3.30 − 2.24i)16-s + (−3.22 − 1.64i)17-s + ⋯
L(s)  = 1  + (0.148 + 0.988i)2-s + (0.262 + 0.514i)3-s + (−0.955 + 0.294i)4-s + (−0.263 + 0.964i)5-s + (−0.469 + 0.335i)6-s + (0.670 + 0.670i)7-s + (−0.432 − 0.901i)8-s + (−0.195 + 0.269i)9-s + (−0.993 − 0.117i)10-s + (0.175 + 0.241i)11-s + (−0.401 − 0.414i)12-s + (−0.197 − 1.24i)13-s + (−0.563 + 0.763i)14-s + (−0.565 + 0.117i)15-s + (0.827 − 0.562i)16-s + (−0.781 − 0.398i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 - 0.263i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 - 0.263i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $-0.964 - 0.263i$
Analytic conductor: \(2.39551\)
Root analytic conductor: \(1.54774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (223, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1/2),\ -0.964 - 0.263i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.170947 + 1.27246i\)
\(L(\frac12)\) \(\approx\) \(0.170947 + 1.27246i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.210 - 1.39i)T \)
3 \( 1 + (-0.453 - 0.891i)T \)
5 \( 1 + (0.590 - 2.15i)T \)
good7 \( 1 + (-1.77 - 1.77i)T + 7iT^{2} \)
11 \( 1 + (-0.582 - 0.801i)T + (-3.39 + 10.4i)T^{2} \)
13 \( 1 + (0.710 + 4.48i)T + (-12.3 + 4.01i)T^{2} \)
17 \( 1 + (3.22 + 1.64i)T + (9.99 + 13.7i)T^{2} \)
19 \( 1 + (-0.911 - 2.80i)T + (-15.3 + 11.1i)T^{2} \)
23 \( 1 + (1.25 - 7.89i)T + (-21.8 - 7.10i)T^{2} \)
29 \( 1 + (-0.616 - 0.200i)T + (23.4 + 17.0i)T^{2} \)
31 \( 1 + (-6.41 + 2.08i)T + (25.0 - 18.2i)T^{2} \)
37 \( 1 + (-4.16 + 0.658i)T + (35.1 - 11.4i)T^{2} \)
41 \( 1 + (-9.50 - 6.90i)T + (12.6 + 38.9i)T^{2} \)
43 \( 1 + (-1.10 + 1.10i)T - 43iT^{2} \)
47 \( 1 + (-8.43 + 4.30i)T + (27.6 - 38.0i)T^{2} \)
53 \( 1 + (5.38 - 2.74i)T + (31.1 - 42.8i)T^{2} \)
59 \( 1 + (5.91 + 4.29i)T + (18.2 + 56.1i)T^{2} \)
61 \( 1 + (-1.00 + 0.727i)T + (18.8 - 58.0i)T^{2} \)
67 \( 1 + (2.66 - 5.23i)T + (-39.3 - 54.2i)T^{2} \)
71 \( 1 + (-11.9 - 3.87i)T + (57.4 + 41.7i)T^{2} \)
73 \( 1 + (8.37 + 1.32i)T + (69.4 + 22.5i)T^{2} \)
79 \( 1 + (-2.78 + 8.57i)T + (-63.9 - 46.4i)T^{2} \)
83 \( 1 + (-3.13 - 1.59i)T + (48.7 + 67.1i)T^{2} \)
89 \( 1 + (-3.29 - 4.53i)T + (-27.5 + 84.6i)T^{2} \)
97 \( 1 + (-3.83 - 7.53i)T + (-57.0 + 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.15340812058760591468651665012, −11.22715870204315253056964615370, −10.08888766717280661259955103808, −9.267884938101297712031517904666, −8.046002741456998413939188788224, −7.56977226581969375906793431899, −6.19668666151638660589876840548, −5.28375749152789150086233402475, −4.07672814966474538687407933152, −2.81989908046061473216800287659, 0.957221695591761389582457915259, 2.32240469946453144082291749001, 4.18327652780622124492930488721, 4.66611367626050036696895847884, 6.30814538127669252617902542668, 7.73152473100678063995417532364, 8.697476412973880580148056735591, 9.271708329318198027167681417661, 10.63731497325799911771166057953, 11.43508250519253153767500471216

Graph of the $Z$-function along the critical line