sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(300, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,0,11]))
pari:[g,chi] = znchar(Mod(223,300))
\(\chi_{300}(67,\cdot)\)
\(\chi_{300}(103,\cdot)\)
\(\chi_{300}(127,\cdot)\)
\(\chi_{300}(163,\cdot)\)
\(\chi_{300}(187,\cdot)\)
\(\chi_{300}(223,\cdot)\)
\(\chi_{300}(247,\cdot)\)
\(\chi_{300}(283,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((151,101,277)\) → \((-1,1,e\left(\frac{11}{20}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 300 }(223, a) \) |
\(1\) | \(1\) | \(i\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)