L(s) = 1 | + 32i·2-s + 243i·3-s − 1.02e3·4-s + (−5.00e3 − 4.87e3i)5-s − 7.77e3·6-s + 7.87e4i·7-s − 3.27e4i·8-s − 5.90e4·9-s + (1.55e5 − 1.60e5i)10-s − 4.93e5·11-s − 2.48e5i·12-s − 2.35e6i·13-s − 2.52e6·14-s + (1.18e6 − 1.21e6i)15-s + 1.04e6·16-s + 4.45e6i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (−0.716 − 0.697i)5-s − 0.408·6-s + 1.77i·7-s − 0.353i·8-s − 0.333·9-s + (0.493 − 0.506i)10-s − 0.924·11-s − 0.288i·12-s − 1.75i·13-s − 1.25·14-s + (0.402 − 0.413i)15-s + 0.250·16-s + 0.760i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.716 + 0.697i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.716 + 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(\approx\) |
\(0.542396 - 0.220324i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.542396 - 0.220324i\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 32iT \) |
| 3 | \( 1 - 243iT \) |
| 5 | \( 1 + (5.00e3 + 4.87e3i)T \) |
good | 7 | \( 1 - 7.87e4iT - 1.97e9T^{2} \) |
| 11 | \( 1 + 4.93e5T + 2.85e11T^{2} \) |
| 13 | \( 1 + 2.35e6iT - 1.79e12T^{2} \) |
| 17 | \( 1 - 4.45e6iT - 3.42e13T^{2} \) |
| 19 | \( 1 - 9.21e6T + 1.16e14T^{2} \) |
| 23 | \( 1 + 5.33e7iT - 9.52e14T^{2} \) |
| 29 | \( 1 - 6.06e7T + 1.22e16T^{2} \) |
| 31 | \( 1 - 1.54e8T + 2.54e16T^{2} \) |
| 37 | \( 1 + 3.40e8iT - 1.77e17T^{2} \) |
| 41 | \( 1 + 6.07e8T + 5.50e17T^{2} \) |
| 43 | \( 1 - 4.12e8iT - 9.29e17T^{2} \) |
| 47 | \( 1 + 2.74e9iT - 2.47e18T^{2} \) |
| 53 | \( 1 + 9.65e8iT - 9.26e18T^{2} \) |
| 59 | \( 1 + 2.66e9T + 3.01e19T^{2} \) |
| 61 | \( 1 + 5.86e9T + 4.35e19T^{2} \) |
| 67 | \( 1 - 8.92e9iT - 1.22e20T^{2} \) |
| 71 | \( 1 + 1.04e10T + 2.31e20T^{2} \) |
| 73 | \( 1 + 1.69e10iT - 3.13e20T^{2} \) |
| 79 | \( 1 + 2.77e10T + 7.47e20T^{2} \) |
| 83 | \( 1 + 5.41e10iT - 1.28e21T^{2} \) |
| 89 | \( 1 + 3.53e10T + 2.77e21T^{2} \) |
| 97 | \( 1 - 1.08e11iT - 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.97030196125755699443342879377, −12.95179128104536404361144007175, −12.07816618657155230015234234388, −10.29601725256030845313515611191, −8.696655729379064812630857416096, −8.082201106299546118512740973930, −5.76790943958575966796842659975, −4.91196069549311910721823771022, −2.95858675657909595509156928211, −0.22460499025096899667949478958,
1.23802608673735608325024454052, 3.11070899272506628444719819268, 4.45834585138622326845891430848, 6.93222580675907995527927061340, 7.77055581704314317493297817599, 9.795199531052564223665529829692, 11.05107008284676020801455515243, 11.85586437236607423984659298004, 13.65036174004387332765921910769, 13.97607279433017626419909952953