L(s) = 1 | + 32i·2-s + 243i·3-s − 1.02e3·4-s + (−6.70e3 + 1.95e3i)5-s − 7.77e3·6-s − 5.29e4i·7-s − 3.27e4i·8-s − 5.90e4·9-s + (−6.24e4 − 2.14e5i)10-s + 5.31e5·11-s − 2.48e5i·12-s + 3.73e5i·13-s + 1.69e6·14-s + (−4.74e5 − 1.63e6i)15-s + 1.04e6·16-s − 4.81e6i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (−0.960 + 0.279i)5-s − 0.408·6-s − 1.18i·7-s − 0.353i·8-s − 0.333·9-s + (−0.197 − 0.678i)10-s + 0.994·11-s − 0.288i·12-s + 0.279i·13-s + 0.841·14-s + (−0.161 − 0.554i)15-s + 0.250·16-s − 0.822i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 - 0.279i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.960 - 0.279i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(\approx\) |
\(1.30294 + 0.185589i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30294 + 0.185589i\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 32iT \) |
| 3 | \( 1 - 243iT \) |
| 5 | \( 1 + (6.70e3 - 1.95e3i)T \) |
good | 7 | \( 1 + 5.29e4iT - 1.97e9T^{2} \) |
| 11 | \( 1 - 5.31e5T + 2.85e11T^{2} \) |
| 13 | \( 1 - 3.73e5iT - 1.79e12T^{2} \) |
| 17 | \( 1 + 4.81e6iT - 3.42e13T^{2} \) |
| 19 | \( 1 + 5.80e6T + 1.16e14T^{2} \) |
| 23 | \( 1 - 3.32e7iT - 9.52e14T^{2} \) |
| 29 | \( 1 - 1.30e8T + 1.22e16T^{2} \) |
| 31 | \( 1 - 6.18e7T + 2.54e16T^{2} \) |
| 37 | \( 1 + 1.37e8iT - 1.77e17T^{2} \) |
| 41 | \( 1 - 1.46e9T + 5.50e17T^{2} \) |
| 43 | \( 1 + 5.30e8iT - 9.29e17T^{2} \) |
| 47 | \( 1 + 1.34e9iT - 2.47e18T^{2} \) |
| 53 | \( 1 + 4.74e9iT - 9.26e18T^{2} \) |
| 59 | \( 1 + 4.37e9T + 3.01e19T^{2} \) |
| 61 | \( 1 + 7.78e9T + 4.35e19T^{2} \) |
| 67 | \( 1 + 4.98e9iT - 1.22e20T^{2} \) |
| 71 | \( 1 - 9.09e9T + 2.31e20T^{2} \) |
| 73 | \( 1 + 1.88e10iT - 3.13e20T^{2} \) |
| 79 | \( 1 - 4.50e10T + 7.47e20T^{2} \) |
| 83 | \( 1 + 6.88e10iT - 1.28e21T^{2} \) |
| 89 | \( 1 - 3.49e9T + 2.77e21T^{2} \) |
| 97 | \( 1 - 1.62e11iT - 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.64118014174156891973781706783, −13.74105188315851369517947148305, −11.90126640706818969726522986932, −10.66625531207514429476817855963, −9.235492466074933419862466630651, −7.73637711821863782111313745355, −6.63866991311177738180284371027, −4.57492410224302979885262832582, −3.62032084465942930265623517185, −0.59373097540416759429421709920,
1.04982967352556303803832571432, 2.69245310748741044106504448458, 4.36026020743116458999998859313, 6.21851511006189160768443984141, 8.130153303584963542772162270021, 9.047396311982597577665507292678, 10.95477871101098433487748564693, 12.17789193211557345450637017536, 12.58648048013555150497373938663, 14.36429642279859224226953976911