L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.866 + 0.5i)5-s + (3.61 + 2.08i)7-s + 0.999·8-s − 0.999i·10-s + (1.11 − 3.12i)11-s + (3.39 − 1.96i)13-s + (−3.61 + 2.08i)14-s + (−0.5 + 0.866i)16-s + 1.14·17-s + 4.10i·19-s + (0.866 + 0.499i)20-s + (2.14 + 2.52i)22-s + (5.50 − 3.17i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.387 + 0.223i)5-s + (1.36 + 0.789i)7-s + 0.353·8-s − 0.316i·10-s + (0.337 − 0.941i)11-s + (0.942 − 0.544i)13-s + (−0.966 + 0.558i)14-s + (−0.125 + 0.216i)16-s + 0.277·17-s + 0.942i·19-s + (0.193 + 0.111i)20-s + (0.457 + 0.539i)22-s + (1.14 − 0.662i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 - 0.305i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.952 - 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.795617009\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.795617009\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-1.11 + 3.12i)T \) |
good | 7 | \( 1 + (-3.61 - 2.08i)T + (3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (-3.39 + 1.96i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.14T + 17T^{2} \) |
| 19 | \( 1 - 4.10iT - 19T^{2} \) |
| 23 | \( 1 + (-5.50 + 3.17i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.62 + 2.82i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.55 + 7.88i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.54T + 37T^{2} \) |
| 41 | \( 1 + (3.46 + 5.99i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (8.59 + 4.96i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.36 - 4.25i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6.65iT - 53T^{2} \) |
| 59 | \( 1 + (-2.56 + 1.48i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.80 + 3.92i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.70 + 8.14i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 4.97iT - 71T^{2} \) |
| 73 | \( 1 + 15.4iT - 73T^{2} \) |
| 79 | \( 1 + (3.43 + 1.98i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.80 + 4.86i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 13.0iT - 89T^{2} \) |
| 97 | \( 1 + (1.13 - 1.97i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.790111128491494478980480503467, −7.893641004071869311088449566168, −7.67110864684643638032669916940, −6.34902567926536888249662533870, −5.84677735002645144041468697301, −5.11899936391497479452194225102, −4.15595493437646984254429261898, −3.20363027049773381619174317654, −1.92771818180129685987650457560, −0.797109866231215818295790344453,
1.15032741855729615921722636409, 1.62621930128023839084783626851, 3.04695576858877668645306717060, 4.02667147564409359481404942649, 4.64920562617979327683890376109, 5.29036785242025283491590686545, 6.89050793184085225606539225708, 7.16970908847718249217817769476, 8.145803976081382028515913350282, 8.680836397385729008376010326845