L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + (3.61 − 2.08i)7-s + 0.999·8-s + 0.999i·10-s + (1.11 + 3.12i)11-s + (3.39 + 1.96i)13-s + (−3.61 − 2.08i)14-s + (−0.5 − 0.866i)16-s + 1.14·17-s − 4.10i·19-s + (0.866 − 0.499i)20-s + (2.14 − 2.52i)22-s + (5.50 + 3.17i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.387 − 0.223i)5-s + (1.36 − 0.789i)7-s + 0.353·8-s + 0.316i·10-s + (0.337 + 0.941i)11-s + (0.942 + 0.544i)13-s + (−0.966 − 0.558i)14-s + (−0.125 − 0.216i)16-s + 0.277·17-s − 0.942i·19-s + (0.193 − 0.111i)20-s + (0.457 − 0.539i)22-s + (1.14 + 0.662i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 + 0.305i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.952 + 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.795617009\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.795617009\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (-1.11 - 3.12i)T \) |
good | 7 | \( 1 + (-3.61 + 2.08i)T + (3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (-3.39 - 1.96i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 1.14T + 17T^{2} \) |
| 19 | \( 1 + 4.10iT - 19T^{2} \) |
| 23 | \( 1 + (-5.50 - 3.17i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.62 - 2.82i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.55 - 7.88i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 5.54T + 37T^{2} \) |
| 41 | \( 1 + (3.46 - 5.99i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (8.59 - 4.96i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.36 + 4.25i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6.65iT - 53T^{2} \) |
| 59 | \( 1 + (-2.56 - 1.48i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.80 - 3.92i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.70 - 8.14i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.97iT - 71T^{2} \) |
| 73 | \( 1 - 15.4iT - 73T^{2} \) |
| 79 | \( 1 + (3.43 - 1.98i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.80 - 4.86i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 13.0iT - 89T^{2} \) |
| 97 | \( 1 + (1.13 + 1.97i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.680836397385729008376010326845, −8.145803976081382028515913350282, −7.16970908847718249217817769476, −6.89050793184085225606539225708, −5.29036785242025283491590686545, −4.64920562617979327683890376109, −4.02667147564409359481404942649, −3.04695576858877668645306717060, −1.62621930128023839084783626851, −1.15032741855729615921722636409,
0.797109866231215818295790344453, 1.92771818180129685987650457560, 3.20363027049773381619174317654, 4.15595493437646984254429261898, 5.11899936391497479452194225102, 5.84677735002645144041468697301, 6.34902567926536888249662533870, 7.67110864684643638032669916940, 7.893641004071869311088449566168, 8.790111128491494478980480503467