| L(s) = 1 | + (1.65 + 1.83i)2-s + (−0.429 + 4.09i)4-s + (1.51 + 1.36i)5-s + (−0.441 − 0.990i)7-s + (−4.22 + 3.07i)8-s + 5.05i·10-s + (−1.28 − 3.05i)11-s + (−0.231 − 1.08i)13-s + (1.09 − 2.44i)14-s + (−4.58 − 0.975i)16-s + (2.03 + 6.25i)17-s + (−4.19 − 5.76i)19-s + (−6.25 + 5.62i)20-s + (3.48 − 7.42i)22-s + (4.70 − 2.71i)23-s + ⋯ |
| L(s) = 1 | + (1.16 + 1.29i)2-s + (−0.214 + 2.04i)4-s + (0.679 + 0.611i)5-s + (−0.166 − 0.374i)7-s + (−1.49 + 1.08i)8-s + 1.59i·10-s + (−0.388 − 0.921i)11-s + (−0.0641 − 0.301i)13-s + (0.291 − 0.654i)14-s + (−1.14 − 0.243i)16-s + (0.493 + 1.51i)17-s + (−0.961 − 1.32i)19-s + (−1.39 + 1.25i)20-s + (0.742 − 1.58i)22-s + (0.982 − 0.566i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.460 - 0.887i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.460 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.24226 + 2.04289i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.24226 + 2.04289i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 11 | \( 1 + (1.28 + 3.05i)T \) |
| good | 2 | \( 1 + (-1.65 - 1.83i)T + (-0.209 + 1.98i)T^{2} \) |
| 5 | \( 1 + (-1.51 - 1.36i)T + (0.522 + 4.97i)T^{2} \) |
| 7 | \( 1 + (0.441 + 0.990i)T + (-4.68 + 5.20i)T^{2} \) |
| 13 | \( 1 + (0.231 + 1.08i)T + (-11.8 + 5.28i)T^{2} \) |
| 17 | \( 1 + (-2.03 - 6.25i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (4.19 + 5.76i)T + (-5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-4.70 + 2.71i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (6.76 - 3.01i)T + (19.4 - 21.5i)T^{2} \) |
| 31 | \( 1 + (-1.16 + 0.246i)T + (28.3 - 12.6i)T^{2} \) |
| 37 | \( 1 + (-0.780 - 0.567i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-1.00 - 0.449i)T + (27.4 + 30.4i)T^{2} \) |
| 43 | \( 1 + (-4.42 - 2.55i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.27 + 0.448i)T + (45.9 - 9.77i)T^{2} \) |
| 53 | \( 1 + (10.3 + 3.36i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-2.19 - 0.230i)T + (57.7 + 12.2i)T^{2} \) |
| 61 | \( 1 + (-1.20 + 5.67i)T + (-55.7 - 24.8i)T^{2} \) |
| 67 | \( 1 + (-0.496 - 0.860i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.12 - 1.98i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (0.486 - 0.669i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (4.53 - 4.07i)T + (8.25 - 78.5i)T^{2} \) |
| 83 | \( 1 + (2.14 + 0.456i)T + (75.8 + 33.7i)T^{2} \) |
| 89 | \( 1 - 6.19iT - 89T^{2} \) |
| 97 | \( 1 + (6.37 + 7.07i)T + (-10.1 + 96.4i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.76195857899627506838371951719, −11.10447204688715162951311277106, −10.38672350338591638011654277165, −8.858549164809718482609628226814, −7.915819656180825507944685737815, −6.81601651684985470358061618519, −6.16906710740964354405535233038, −5.28526876158297372173675231018, −4.00175368894909497677299887249, −2.83623761276538754091722145658,
1.63183071588953032902239732226, 2.73399761475408125652209044597, 4.16663433707228270750189942751, 5.18302186781352145923534771807, 5.86682938611854059008618952432, 7.46127859736125443745733004556, 9.214003578928194880153776854673, 9.724231419284422714097455861925, 10.71079486114007057370992547053, 11.72741460696161274165400369626