L(s) = 1 | + (−1 − 1.73i)2-s + (−0.999 + 1.73i)4-s + (−1 + 1.73i)5-s + (−2 − 3.46i)7-s + 3.99·10-s + (0.5 + 0.866i)11-s + (−2 + 3.46i)13-s + (−3.99 + 6.92i)14-s + (1.99 + 3.46i)16-s − 4·17-s − 6·19-s + (−2 − 3.46i)20-s + (0.999 − 1.73i)22-s + (−0.5 + 0.866i)23-s + (0.500 + 0.866i)25-s + 7.99·26-s + ⋯ |
L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.499 + 0.866i)4-s + (−0.447 + 0.774i)5-s + (−0.755 − 1.30i)7-s + 1.26·10-s + (0.150 + 0.261i)11-s + (−0.554 + 0.960i)13-s + (−1.06 + 1.85i)14-s + (0.499 + 0.866i)16-s − 0.970·17-s − 1.37·19-s + (−0.447 − 0.774i)20-s + (0.213 − 0.369i)22-s + (−0.104 + 0.180i)23-s + (0.100 + 0.173i)25-s + 1.56·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (1 + 1.73i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1 - 1.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2 + 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (2 - 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4T + 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3T + 37T^{2} \) |
| 41 | \( 1 + (1 - 1.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6 + 10.3i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.5 + 6.06i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 3T + 53T^{2} \) |
| 59 | \( 1 + (-5.5 + 9.52i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 15T + 71T^{2} \) |
| 73 | \( 1 + 8T + 73T^{2} \) |
| 79 | \( 1 + (-5 - 8.66i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6 - 10.3i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + (8.5 + 14.7i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95499757473882603226545618130, −10.29395986250559392884437524957, −9.551826926631181505926788507992, −8.509153422029926724631821535134, −7.10375162472758260745881929549, −6.56871821402738322683438601724, −4.30360202497684370705698568529, −3.43677556435135175114633298612, −2.05933520908841347903091490138, 0,
2.78998953712282322401398440323, 4.67100900698936684166211889573, 5.86337034063811022888697183384, 6.52581389050606359161365143536, 7.84516899732185259191929311161, 8.634684866455110705691323555663, 9.100048405657324587845127126321, 10.18183933596119276234822335504, 11.63743641857147060960167169102