Properties

Label 297.2.e.a.199.1
Level $297$
Weight $2$
Character 297.199
Analytic conductor $2.372$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(100,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.100"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 199.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 297.199
Dual form 297.2.e.a.100.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-1.00000 + 1.73205i) q^{5} +(-2.00000 - 3.46410i) q^{7} +4.00000 q^{10} +(0.500000 + 0.866025i) q^{11} +(-2.00000 + 3.46410i) q^{13} +(-4.00000 + 6.92820i) q^{14} +(2.00000 + 3.46410i) q^{16} -4.00000 q^{17} -6.00000 q^{19} +(-2.00000 - 3.46410i) q^{20} +(1.00000 - 1.73205i) q^{22} +(-0.500000 + 0.866025i) q^{23} +(0.500000 + 0.866025i) q^{25} +8.00000 q^{26} +8.00000 q^{28} +(-0.500000 + 0.866025i) q^{31} +(4.00000 - 6.92820i) q^{32} +(4.00000 + 6.92820i) q^{34} +8.00000 q^{35} +3.00000 q^{37} +(6.00000 + 10.3923i) q^{38} +(-1.00000 + 1.73205i) q^{41} +(-6.00000 - 10.3923i) q^{43} -2.00000 q^{44} +2.00000 q^{46} +(-3.50000 - 6.06218i) q^{47} +(-4.50000 + 7.79423i) q^{49} +(1.00000 - 1.73205i) q^{50} +(-4.00000 - 6.92820i) q^{52} -3.00000 q^{53} -2.00000 q^{55} +(5.50000 - 9.52628i) q^{59} +2.00000 q^{62} -8.00000 q^{64} +(-4.00000 - 6.92820i) q^{65} +(2.00000 - 3.46410i) q^{67} +(4.00000 - 6.92820i) q^{68} +(-8.00000 - 13.8564i) q^{70} -15.0000 q^{71} -8.00000 q^{73} +(-3.00000 - 5.19615i) q^{74} +(6.00000 - 10.3923i) q^{76} +(2.00000 - 3.46410i) q^{77} +(5.00000 + 8.66025i) q^{79} -8.00000 q^{80} +4.00000 q^{82} +(6.00000 + 10.3923i) q^{83} +(4.00000 - 6.92820i) q^{85} +(-12.0000 + 20.7846i) q^{86} -3.00000 q^{89} +16.0000 q^{91} +(-1.00000 - 1.73205i) q^{92} +(-7.00000 + 12.1244i) q^{94} +(6.00000 - 10.3923i) q^{95} +(-8.50000 - 14.7224i) q^{97} +18.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{7} + 8 q^{10} + q^{11} - 4 q^{13} - 8 q^{14} + 4 q^{16} - 8 q^{17} - 12 q^{19} - 4 q^{20} + 2 q^{22} - q^{23} + q^{25} + 16 q^{26} + 16 q^{28} - q^{31} + 8 q^{32}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) −1.00000 + 1.73205i −0.447214 + 0.774597i −0.998203 0.0599153i \(-0.980917\pi\)
0.550990 + 0.834512i \(0.314250\pi\)
\(6\) 0 0
\(7\) −2.00000 3.46410i −0.755929 1.30931i −0.944911 0.327327i \(-0.893852\pi\)
0.188982 0.981981i \(-0.439481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 4.00000 1.26491
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i
\(12\) 0 0
\(13\) −2.00000 + 3.46410i −0.554700 + 0.960769i 0.443227 + 0.896410i \(0.353834\pi\)
−0.997927 + 0.0643593i \(0.979500\pi\)
\(14\) −4.00000 + 6.92820i −1.06904 + 1.85164i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −2.00000 3.46410i −0.447214 0.774597i
\(21\) 0 0
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) −0.500000 + 0.866025i −0.104257 + 0.180579i −0.913434 0.406986i \(-0.866580\pi\)
0.809177 + 0.587565i \(0.199913\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 8.00000 1.56893
\(27\) 0 0
\(28\) 8.00000 1.51186
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) 4.00000 6.92820i 0.707107 1.22474i
\(33\) 0 0
\(34\) 4.00000 + 6.92820i 0.685994 + 1.18818i
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 6.00000 + 10.3923i 0.973329 + 1.68585i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.00000 + 1.73205i −0.156174 + 0.270501i −0.933486 0.358614i \(-0.883249\pi\)
0.777312 + 0.629115i \(0.216583\pi\)
\(42\) 0 0
\(43\) −6.00000 10.3923i −0.914991 1.58481i −0.806914 0.590669i \(-0.798864\pi\)
−0.108078 0.994142i \(-0.534469\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) −3.50000 6.06218i −0.510527 0.884260i −0.999926 0.0121990i \(-0.996117\pi\)
0.489398 0.872060i \(-0.337217\pi\)
\(48\) 0 0
\(49\) −4.50000 + 7.79423i −0.642857 + 1.11346i
\(50\) 1.00000 1.73205i 0.141421 0.244949i
\(51\) 0 0
\(52\) −4.00000 6.92820i −0.554700 0.960769i
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.50000 9.52628i 0.716039 1.24022i −0.246518 0.969138i \(-0.579287\pi\)
0.962557 0.271078i \(-0.0873801\pi\)
\(60\) 0 0
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 2.00000 0.254000
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −4.00000 6.92820i −0.496139 0.859338i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 4.00000 6.92820i 0.485071 0.840168i
\(69\) 0 0
\(70\) −8.00000 13.8564i −0.956183 1.65616i
\(71\) −15.0000 −1.78017 −0.890086 0.455792i \(-0.849356\pi\)
−0.890086 + 0.455792i \(0.849356\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) −3.00000 5.19615i −0.348743 0.604040i
\(75\) 0 0
\(76\) 6.00000 10.3923i 0.688247 1.19208i
\(77\) 2.00000 3.46410i 0.227921 0.394771i
\(78\) 0 0
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) −8.00000 −0.894427
\(81\) 0 0
\(82\) 4.00000 0.441726
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) 4.00000 6.92820i 0.433861 0.751469i
\(86\) −12.0000 + 20.7846i −1.29399 + 2.24126i
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) −1.00000 1.73205i −0.104257 0.180579i
\(93\) 0 0
\(94\) −7.00000 + 12.1244i −0.721995 + 1.25053i
\(95\) 6.00000 10.3923i 0.615587 1.06623i
\(96\) 0 0
\(97\) −8.50000 14.7224i −0.863044 1.49484i −0.868976 0.494854i \(-0.835222\pi\)
0.00593185 0.999982i \(-0.498112\pi\)
\(98\) 18.0000 1.81827
\(99\) 0 0
\(100\) −2.00000 −0.200000
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 0.500000 0.866025i 0.0492665 0.0853320i −0.840341 0.542059i \(-0.817645\pi\)
0.889607 + 0.456727i \(0.150978\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 2.00000 + 3.46410i 0.190693 + 0.330289i
\(111\) 0 0
\(112\) 8.00000 13.8564i 0.755929 1.30931i
\(113\) −1.50000 + 2.59808i −0.141108 + 0.244406i −0.927914 0.372794i \(-0.878400\pi\)
0.786806 + 0.617200i \(0.211733\pi\)
\(114\) 0 0
\(115\) −1.00000 1.73205i −0.0932505 0.161515i
\(116\) 0 0
\(117\) 0 0
\(118\) −22.0000 −2.02526
\(119\) 8.00000 + 13.8564i 0.733359 + 1.27021i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.00000 1.73205i −0.0898027 0.155543i
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) −8.00000 + 13.8564i −0.701646 + 1.21529i
\(131\) 9.00000 15.5885i 0.786334 1.36197i −0.141865 0.989886i \(-0.545310\pi\)
0.928199 0.372084i \(-0.121357\pi\)
\(132\) 0 0
\(133\) 12.0000 + 20.7846i 1.04053 + 1.80225i
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) 0 0
\(137\) −3.50000 6.06218i −0.299025 0.517927i 0.676888 0.736086i \(-0.263328\pi\)
−0.975913 + 0.218159i \(0.929995\pi\)
\(138\) 0 0
\(139\) −8.00000 + 13.8564i −0.678551 + 1.17529i 0.296866 + 0.954919i \(0.404058\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) −8.00000 + 13.8564i −0.676123 + 1.17108i
\(141\) 0 0
\(142\) 15.0000 + 25.9808i 1.25877 + 2.18026i
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 8.00000 + 13.8564i 0.662085 + 1.14676i
\(147\) 0 0
\(148\) −3.00000 + 5.19615i −0.246598 + 0.427121i
\(149\) 1.00000 1.73205i 0.0819232 0.141895i −0.822153 0.569267i \(-0.807227\pi\)
0.904076 + 0.427372i \(0.140560\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −8.00000 −0.644658
\(155\) −1.00000 1.73205i −0.0803219 0.139122i
\(156\) 0 0
\(157\) −7.00000 + 12.1244i −0.558661 + 0.967629i 0.438948 + 0.898513i \(0.355351\pi\)
−0.997609 + 0.0691164i \(0.977982\pi\)
\(158\) 10.0000 17.3205i 0.795557 1.37795i
\(159\) 0 0
\(160\) 8.00000 + 13.8564i 0.632456 + 1.09545i
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 13.0000 1.01824 0.509119 0.860696i \(-0.329971\pi\)
0.509119 + 0.860696i \(0.329971\pi\)
\(164\) −2.00000 3.46410i −0.156174 0.270501i
\(165\) 0 0
\(166\) 12.0000 20.7846i 0.931381 1.61320i
\(167\) −9.00000 + 15.5885i −0.696441 + 1.20627i 0.273252 + 0.961943i \(0.411901\pi\)
−0.969693 + 0.244328i \(0.921432\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) −16.0000 −1.22714
\(171\) 0 0
\(172\) 24.0000 1.82998
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) 0 0
\(175\) 2.00000 3.46410i 0.151186 0.261861i
\(176\) −2.00000 + 3.46410i −0.150756 + 0.261116i
\(177\) 0 0
\(178\) 3.00000 + 5.19615i 0.224860 + 0.389468i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) −16.0000 27.7128i −1.18600 2.05421i
\(183\) 0 0
\(184\) 0 0
\(185\) −3.00000 + 5.19615i −0.220564 + 0.382029i
\(186\) 0 0
\(187\) −2.00000 3.46410i −0.146254 0.253320i
\(188\) 14.0000 1.02105
\(189\) 0 0
\(190\) −24.0000 −1.74114
\(191\) 10.0000 + 17.3205i 0.723575 + 1.25327i 0.959558 + 0.281511i \(0.0908356\pi\)
−0.235983 + 0.971757i \(0.575831\pi\)
\(192\) 0 0
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) −17.0000 + 29.4449i −1.22053 + 2.11402i
\(195\) 0 0
\(196\) −9.00000 15.5885i −0.642857 1.11346i
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −15.0000 −1.06332 −0.531661 0.846957i \(-0.678432\pi\)
−0.531661 + 0.846957i \(0.678432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.00000 3.46410i 0.140720 0.243733i
\(203\) 0 0
\(204\) 0 0
\(205\) −2.00000 3.46410i −0.139686 0.241943i
\(206\) −2.00000 −0.139347
\(207\) 0 0
\(208\) −16.0000 −1.10940
\(209\) −3.00000 5.19615i −0.207514 0.359425i
\(210\) 0 0
\(211\) 6.00000 10.3923i 0.413057 0.715436i −0.582165 0.813070i \(-0.697794\pi\)
0.995222 + 0.0976347i \(0.0311277\pi\)
\(212\) 3.00000 5.19615i 0.206041 0.356873i
\(213\) 0 0
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) 24.0000 1.63679
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) −10.0000 17.3205i −0.677285 1.17309i
\(219\) 0 0
\(220\) 2.00000 3.46410i 0.134840 0.233550i
\(221\) 8.00000 13.8564i 0.538138 0.932083i
\(222\) 0 0
\(223\) −3.50000 6.06218i −0.234377 0.405953i 0.724714 0.689050i \(-0.241972\pi\)
−0.959092 + 0.283096i \(0.908638\pi\)
\(224\) −32.0000 −2.13809
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) −6.00000 10.3923i −0.398234 0.689761i 0.595274 0.803523i \(-0.297043\pi\)
−0.993508 + 0.113761i \(0.963710\pi\)
\(228\) 0 0
\(229\) −1.50000 + 2.59808i −0.0991228 + 0.171686i −0.911322 0.411695i \(-0.864937\pi\)
0.812199 + 0.583380i \(0.198270\pi\)
\(230\) −2.00000 + 3.46410i −0.131876 + 0.228416i
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 14.0000 0.913259
\(236\) 11.0000 + 19.0526i 0.716039 + 1.24022i
\(237\) 0 0
\(238\) 16.0000 27.7128i 1.03713 1.79635i
\(239\) −12.0000 + 20.7846i −0.776215 + 1.34444i 0.157893 + 0.987456i \(0.449530\pi\)
−0.934109 + 0.356988i \(0.883804\pi\)
\(240\) 0 0
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) 2.00000 0.128565
\(243\) 0 0
\(244\) 0 0
\(245\) −9.00000 15.5885i −0.574989 0.995910i
\(246\) 0 0
\(247\) 12.0000 20.7846i 0.763542 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 12.0000 + 20.7846i 0.758947 + 1.31453i
\(251\) −13.0000 −0.820553 −0.410276 0.911961i \(-0.634568\pi\)
−0.410276 + 0.911961i \(0.634568\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) −2.00000 3.46410i −0.125491 0.217357i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −13.0000 + 22.5167i −0.810918 + 1.40455i 0.101305 + 0.994855i \(0.467698\pi\)
−0.912222 + 0.409695i \(0.865635\pi\)
\(258\) 0 0
\(259\) −6.00000 10.3923i −0.372822 0.645746i
\(260\) 16.0000 0.992278
\(261\) 0 0
\(262\) −36.0000 −2.22409
\(263\) 1.00000 + 1.73205i 0.0616626 + 0.106803i 0.895209 0.445647i \(-0.147026\pi\)
−0.833546 + 0.552450i \(0.813693\pi\)
\(264\) 0 0
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) 24.0000 41.5692i 1.47153 2.54877i
\(267\) 0 0
\(268\) 4.00000 + 6.92820i 0.244339 + 0.423207i
\(269\) 5.00000 0.304855 0.152428 0.988315i \(-0.451291\pi\)
0.152428 + 0.988315i \(0.451291\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) −8.00000 13.8564i −0.485071 0.840168i
\(273\) 0 0
\(274\) −7.00000 + 12.1244i −0.422885 + 0.732459i
\(275\) −0.500000 + 0.866025i −0.0301511 + 0.0522233i
\(276\) 0 0
\(277\) 1.00000 + 1.73205i 0.0600842 + 0.104069i 0.894503 0.447062i \(-0.147530\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(278\) 32.0000 1.91923
\(279\) 0 0
\(280\) 0 0
\(281\) −3.00000 5.19615i −0.178965 0.309976i 0.762561 0.646916i \(-0.223942\pi\)
−0.941526 + 0.336939i \(0.890608\pi\)
\(282\) 0 0
\(283\) 1.00000 1.73205i 0.0594438 0.102960i −0.834772 0.550596i \(-0.814401\pi\)
0.894216 + 0.447636i \(0.147734\pi\)
\(284\) 15.0000 25.9808i 0.890086 1.54167i
\(285\) 0 0
\(286\) 4.00000 + 6.92820i 0.236525 + 0.409673i
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 8.00000 13.8564i 0.468165 0.810885i
\(293\) −9.00000 + 15.5885i −0.525786 + 0.910687i 0.473763 + 0.880652i \(0.342895\pi\)
−0.999549 + 0.0300351i \(0.990438\pi\)
\(294\) 0 0
\(295\) 11.0000 + 19.0526i 0.640445 + 1.10928i
\(296\) 0 0
\(297\) 0 0
\(298\) −4.00000 −0.231714
\(299\) −2.00000 3.46410i −0.115663 0.200334i
\(300\) 0 0
\(301\) −24.0000 + 41.5692i −1.38334 + 2.39601i
\(302\) 10.0000 17.3205i 0.575435 0.996683i
\(303\) 0 0
\(304\) −12.0000 20.7846i −0.688247 1.19208i
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 4.00000 + 6.92820i 0.227921 + 0.394771i
\(309\) 0 0
\(310\) −2.00000 + 3.46410i −0.113592 + 0.196748i
\(311\) 1.50000 2.59808i 0.0850572 0.147323i −0.820358 0.571850i \(-0.806226\pi\)
0.905416 + 0.424526i \(0.139559\pi\)
\(312\) 0 0
\(313\) −5.50000 9.52628i −0.310878 0.538457i 0.667674 0.744453i \(-0.267290\pi\)
−0.978553 + 0.205996i \(0.933957\pi\)
\(314\) 28.0000 1.58013
\(315\) 0 0
\(316\) −20.0000 −1.12509
\(317\) 6.50000 + 11.2583i 0.365076 + 0.632331i 0.988788 0.149323i \(-0.0477095\pi\)
−0.623712 + 0.781654i \(0.714376\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.00000 13.8564i 0.447214 0.774597i
\(321\) 0 0
\(322\) −4.00000 6.92820i −0.222911 0.386094i
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) −13.0000 22.5167i −0.720003 1.24708i
\(327\) 0 0
\(328\) 0 0
\(329\) −14.0000 + 24.2487i −0.771845 + 1.33687i
\(330\) 0 0
\(331\) −2.00000 3.46410i −0.109930 0.190404i 0.805812 0.592172i \(-0.201729\pi\)
−0.915742 + 0.401768i \(0.868396\pi\)
\(332\) −24.0000 −1.31717
\(333\) 0 0
\(334\) 36.0000 1.96983
\(335\) 4.00000 + 6.92820i 0.218543 + 0.378528i
\(336\) 0 0
\(337\) −16.0000 + 27.7128i −0.871576 + 1.50961i −0.0112091 + 0.999937i \(0.503568\pi\)
−0.860366 + 0.509676i \(0.829765\pi\)
\(338\) −3.00000 + 5.19615i −0.163178 + 0.282633i
\(339\) 0 0
\(340\) 8.00000 + 13.8564i 0.433861 + 0.751469i
\(341\) −1.00000 −0.0541530
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 6.00000 10.3923i 0.322562 0.558694i
\(347\) −1.00000 + 1.73205i −0.0536828 + 0.0929814i −0.891618 0.452788i \(-0.850429\pi\)
0.837935 + 0.545770i \(0.183763\pi\)
\(348\) 0 0
\(349\) −3.00000 5.19615i −0.160586 0.278144i 0.774493 0.632583i \(-0.218005\pi\)
−0.935079 + 0.354439i \(0.884672\pi\)
\(350\) −8.00000 −0.427618
\(351\) 0 0
\(352\) 8.00000 0.426401
\(353\) 1.50000 + 2.59808i 0.0798369 + 0.138282i 0.903179 0.429263i \(-0.141227\pi\)
−0.823343 + 0.567545i \(0.807893\pi\)
\(354\) 0 0
\(355\) 15.0000 25.9808i 0.796117 1.37892i
\(356\) 3.00000 5.19615i 0.159000 0.275396i
\(357\) 0 0
\(358\) −12.0000 20.7846i −0.634220 1.09850i
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 14.0000 + 24.2487i 0.735824 + 1.27448i
\(363\) 0 0
\(364\) −16.0000 + 27.7128i −0.838628 + 1.45255i
\(365\) 8.00000 13.8564i 0.418739 0.725277i
\(366\) 0 0
\(367\) 4.00000 + 6.92820i 0.208798 + 0.361649i 0.951336 0.308155i \(-0.0997115\pi\)
−0.742538 + 0.669804i \(0.766378\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 12.0000 0.623850
\(371\) 6.00000 + 10.3923i 0.311504 + 0.539542i
\(372\) 0 0
\(373\) −11.0000 + 19.0526i −0.569558 + 0.986504i 0.427051 + 0.904227i \(0.359552\pi\)
−0.996610 + 0.0822766i \(0.973781\pi\)
\(374\) −4.00000 + 6.92820i −0.206835 + 0.358249i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 12.0000 + 20.7846i 0.615587 + 1.06623i
\(381\) 0 0
\(382\) 20.0000 34.6410i 1.02329 1.77239i
\(383\) 4.00000 6.92820i 0.204390 0.354015i −0.745548 0.666452i \(-0.767812\pi\)
0.949938 + 0.312437i \(0.101145\pi\)
\(384\) 0 0
\(385\) 4.00000 + 6.92820i 0.203859 + 0.353094i
\(386\) −28.0000 −1.42516
\(387\) 0 0
\(388\) 34.0000 1.72609
\(389\) 4.50000 + 7.79423i 0.228159 + 0.395183i 0.957263 0.289220i \(-0.0933960\pi\)
−0.729103 + 0.684403i \(0.760063\pi\)
\(390\) 0 0
\(391\) 2.00000 3.46410i 0.101144 0.175187i
\(392\) 0 0
\(393\) 0 0
\(394\) −2.00000 3.46410i −0.100759 0.174519i
\(395\) −20.0000 −1.00631
\(396\) 0 0
\(397\) 25.0000 1.25471 0.627357 0.778732i \(-0.284137\pi\)
0.627357 + 0.778732i \(0.284137\pi\)
\(398\) 15.0000 + 25.9808i 0.751882 + 1.30230i
\(399\) 0 0
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) 14.5000 25.1147i 0.724095 1.25417i −0.235250 0.971935i \(-0.575591\pi\)
0.959345 0.282235i \(-0.0910758\pi\)
\(402\) 0 0
\(403\) −2.00000 3.46410i −0.0996271 0.172559i
\(404\) −4.00000 −0.199007
\(405\) 0 0
\(406\) 0 0
\(407\) 1.50000 + 2.59808i 0.0743522 + 0.128782i
\(408\) 0 0
\(409\) −9.00000 + 15.5885i −0.445021 + 0.770800i −0.998054 0.0623602i \(-0.980137\pi\)
0.553032 + 0.833160i \(0.313471\pi\)
\(410\) −4.00000 + 6.92820i −0.197546 + 0.342160i
\(411\) 0 0
\(412\) 1.00000 + 1.73205i 0.0492665 + 0.0853320i
\(413\) −44.0000 −2.16510
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 16.0000 + 27.7128i 0.784465 + 1.35873i
\(417\) 0 0
\(418\) −6.00000 + 10.3923i −0.293470 + 0.508304i
\(419\) −3.50000 + 6.06218i −0.170986 + 0.296157i −0.938765 0.344558i \(-0.888029\pi\)
0.767779 + 0.640715i \(0.221362\pi\)
\(420\) 0 0
\(421\) −18.5000 32.0429i −0.901635 1.56168i −0.825372 0.564590i \(-0.809034\pi\)
−0.0762630 0.997088i \(-0.524299\pi\)
\(422\) −24.0000 −1.16830
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 3.46410i −0.0970143 0.168034i
\(426\) 0 0
\(427\) 0 0
\(428\) −6.00000 + 10.3923i −0.290021 + 0.502331i
\(429\) 0 0
\(430\) −24.0000 41.5692i −1.15738 2.00465i
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 13.0000 0.624740 0.312370 0.949960i \(-0.398877\pi\)
0.312370 + 0.949960i \(0.398877\pi\)
\(434\) −4.00000 6.92820i −0.192006 0.332564i
\(435\) 0 0
\(436\) −10.0000 + 17.3205i −0.478913 + 0.829502i
\(437\) 3.00000 5.19615i 0.143509 0.248566i
\(438\) 0 0
\(439\) 10.0000 + 17.3205i 0.477274 + 0.826663i 0.999661 0.0260459i \(-0.00829161\pi\)
−0.522387 + 0.852709i \(0.674958\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −32.0000 −1.52208
\(443\) −20.5000 35.5070i −0.973984 1.68699i −0.683247 0.730188i \(-0.739433\pi\)
−0.290738 0.956803i \(-0.593901\pi\)
\(444\) 0 0
\(445\) 3.00000 5.19615i 0.142214 0.246321i
\(446\) −7.00000 + 12.1244i −0.331460 + 0.574105i
\(447\) 0 0
\(448\) 16.0000 + 27.7128i 0.755929 + 1.30931i
\(449\) 1.00000 0.0471929 0.0235965 0.999722i \(-0.492488\pi\)
0.0235965 + 0.999722i \(0.492488\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) −3.00000 5.19615i −0.141108 0.244406i
\(453\) 0 0
\(454\) −12.0000 + 20.7846i −0.563188 + 0.975470i
\(455\) −16.0000 + 27.7128i −0.750092 + 1.29920i
\(456\) 0 0
\(457\) 9.00000 + 15.5885i 0.421002 + 0.729197i 0.996038 0.0889312i \(-0.0283451\pi\)
−0.575036 + 0.818128i \(0.695012\pi\)
\(458\) 6.00000 0.280362
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) −15.0000 25.9808i −0.698620 1.21004i −0.968945 0.247276i \(-0.920465\pi\)
0.270326 0.962769i \(-0.412869\pi\)
\(462\) 0 0
\(463\) 17.5000 30.3109i 0.813294 1.40867i −0.0972525 0.995260i \(-0.531005\pi\)
0.910546 0.413407i \(-0.135661\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) −14.0000 24.2487i −0.645772 1.11851i
\(471\) 0 0
\(472\) 0 0
\(473\) 6.00000 10.3923i 0.275880 0.477839i
\(474\) 0 0
\(475\) −3.00000 5.19615i −0.137649 0.238416i
\(476\) −32.0000 −1.46672
\(477\) 0 0
\(478\) 48.0000 2.19547
\(479\) −17.0000 29.4449i −0.776750 1.34537i −0.933806 0.357780i \(-0.883534\pi\)
0.157056 0.987590i \(-0.449800\pi\)
\(480\) 0 0
\(481\) −6.00000 + 10.3923i −0.273576 + 0.473848i
\(482\) −10.0000 + 17.3205i −0.455488 + 0.788928i
\(483\) 0 0
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) 34.0000 1.54386
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −18.0000 + 31.1769i −0.813157 + 1.40843i
\(491\) 5.00000 8.66025i 0.225647 0.390832i −0.730866 0.682520i \(-0.760884\pi\)
0.956513 + 0.291689i \(0.0942171\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −48.0000 −2.15962
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 30.0000 + 51.9615i 1.34568 + 2.33079i
\(498\) 0 0
\(499\) 12.5000 21.6506i 0.559577 0.969216i −0.437955 0.898997i \(-0.644297\pi\)
0.997532 0.0702185i \(-0.0223697\pi\)
\(500\) 12.0000 20.7846i 0.536656 0.929516i
\(501\) 0 0
\(502\) 13.0000 + 22.5167i 0.580218 + 1.00497i
\(503\) −10.0000 −0.445878 −0.222939 0.974832i \(-0.571565\pi\)
−0.222939 + 0.974832i \(0.571565\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 1.00000 + 1.73205i 0.0444554 + 0.0769991i
\(507\) 0 0
\(508\) −2.00000 + 3.46410i −0.0887357 + 0.153695i
\(509\) 1.50000 2.59808i 0.0664863 0.115158i −0.830866 0.556473i \(-0.812154\pi\)
0.897352 + 0.441315i \(0.145488\pi\)
\(510\) 0 0
\(511\) 16.0000 + 27.7128i 0.707798 + 1.22594i
\(512\) 32.0000 1.41421
\(513\) 0 0
\(514\) 52.0000 2.29362
\(515\) 1.00000 + 1.73205i 0.0440653 + 0.0763233i
\(516\) 0 0
\(517\) 3.50000 6.06218i 0.153930 0.266614i
\(518\) −12.0000 + 20.7846i −0.527250 + 0.913223i
\(519\) 0 0
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 18.0000 + 31.1769i 0.786334 + 1.36197i
\(525\) 0 0
\(526\) 2.00000 3.46410i 0.0872041 0.151042i
\(527\) 2.00000 3.46410i 0.0871214 0.150899i
\(528\) 0 0
\(529\) 11.0000 + 19.0526i 0.478261 + 0.828372i
\(530\) −12.0000 −0.521247
\(531\) 0 0
\(532\) −48.0000 −2.08106
\(533\) −4.00000 6.92820i −0.173259 0.300094i
\(534\) 0 0
\(535\) −6.00000 + 10.3923i −0.259403 + 0.449299i
\(536\) 0 0
\(537\) 0 0
\(538\) −5.00000 8.66025i −0.215565 0.373370i
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) 16.0000 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(542\) −2.00000 3.46410i −0.0859074 0.148796i
\(543\) 0 0
\(544\) −16.0000 + 27.7128i −0.685994 + 1.18818i
\(545\) −10.0000 + 17.3205i −0.428353 + 0.741929i
\(546\) 0 0
\(547\) −1.00000 1.73205i −0.0427569 0.0740571i 0.843855 0.536571i \(-0.180281\pi\)
−0.886612 + 0.462514i \(0.846947\pi\)
\(548\) 14.0000 0.598050
\(549\) 0 0
\(550\) 2.00000 0.0852803
\(551\) 0 0
\(552\) 0 0
\(553\) 20.0000 34.6410i 0.850487 1.47309i
\(554\) 2.00000 3.46410i 0.0849719 0.147176i
\(555\) 0 0
\(556\) −16.0000 27.7128i −0.678551 1.17529i
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 0 0
\(559\) 48.0000 2.03018
\(560\) 16.0000 + 27.7128i 0.676123 + 1.17108i
\(561\) 0 0
\(562\) −6.00000 + 10.3923i −0.253095 + 0.438373i
\(563\) −1.00000 + 1.73205i −0.0421450 + 0.0729972i −0.886328 0.463057i \(-0.846752\pi\)
0.844183 + 0.536054i \(0.180086\pi\)
\(564\) 0 0
\(565\) −3.00000 5.19615i −0.126211 0.218604i
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 0 0
\(569\) −12.0000 20.7846i −0.503066 0.871336i −0.999994 0.00354413i \(-0.998872\pi\)
0.496928 0.867792i \(-0.334461\pi\)
\(570\) 0 0
\(571\) 8.00000 13.8564i 0.334790 0.579873i −0.648655 0.761083i \(-0.724668\pi\)
0.983444 + 0.181210i \(0.0580014\pi\)
\(572\) 4.00000 6.92820i 0.167248 0.289683i
\(573\) 0 0
\(574\) −8.00000 13.8564i −0.333914 0.578355i
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) 1.00000 + 1.73205i 0.0415945 + 0.0720438i
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0000 41.5692i 0.995688 1.72458i
\(582\) 0 0
\(583\) −1.50000 2.59808i −0.0621237 0.107601i
\(584\) 0 0
\(585\) 0 0
\(586\) 36.0000 1.48715
\(587\) −8.50000 14.7224i −0.350833 0.607660i 0.635563 0.772049i \(-0.280768\pi\)
−0.986396 + 0.164389i \(0.947435\pi\)
\(588\) 0 0
\(589\) 3.00000 5.19615i 0.123613 0.214104i
\(590\) 22.0000 38.1051i 0.905726 1.56876i
\(591\) 0 0
\(592\) 6.00000 + 10.3923i 0.246598 + 0.427121i
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) −32.0000 −1.31187
\(596\) 2.00000 + 3.46410i 0.0819232 + 0.141895i
\(597\) 0 0
\(598\) −4.00000 + 6.92820i −0.163572 + 0.283315i
\(599\) 8.00000 13.8564i 0.326871 0.566157i −0.655018 0.755613i \(-0.727339\pi\)
0.981889 + 0.189456i \(0.0606724\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 96.0000 3.91267
\(603\) 0 0
\(604\) −20.0000 −0.813788
\(605\) −1.00000 1.73205i −0.0406558 0.0704179i
\(606\) 0 0
\(607\) 2.00000 3.46410i 0.0811775 0.140604i −0.822578 0.568652i \(-0.807465\pi\)
0.903756 + 0.428048i \(0.140799\pi\)
\(608\) −24.0000 + 41.5692i −0.973329 + 1.68585i
\(609\) 0 0
\(610\) 0 0
\(611\) 28.0000 1.13276
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) −20.0000 34.6410i −0.807134 1.39800i
\(615\) 0 0
\(616\) 0 0
\(617\) −13.5000 + 23.3827i −0.543490 + 0.941351i 0.455211 + 0.890384i \(0.349564\pi\)
−0.998700 + 0.0509678i \(0.983769\pi\)
\(618\) 0 0
\(619\) 15.5000 + 26.8468i 0.622998 + 1.07906i 0.988924 + 0.148420i \(0.0474187\pi\)
−0.365927 + 0.930644i \(0.619248\pi\)
\(620\) 4.00000 0.160644
\(621\) 0 0
\(622\) −6.00000 −0.240578
\(623\) 6.00000 + 10.3923i 0.240385 + 0.416359i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) −11.0000 + 19.0526i −0.439648 + 0.761493i
\(627\) 0 0
\(628\) −14.0000 24.2487i −0.558661 0.967629i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 13.0000 22.5167i 0.516296 0.894251i
\(635\) −2.00000 + 3.46410i −0.0793676 + 0.137469i
\(636\) 0 0
\(637\) −18.0000 31.1769i −0.713186 1.23527i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.5000 + 33.7750i 0.770204 + 1.33403i 0.937451 + 0.348117i \(0.113179\pi\)
−0.167247 + 0.985915i \(0.553488\pi\)
\(642\) 0 0
\(643\) −8.50000 + 14.7224i −0.335207 + 0.580596i −0.983525 0.180774i \(-0.942140\pi\)
0.648317 + 0.761370i \(0.275473\pi\)
\(644\) −4.00000 + 6.92820i −0.157622 + 0.273009i
\(645\) 0 0
\(646\) −24.0000 41.5692i −0.944267 1.63552i
\(647\) −17.0000 −0.668339 −0.334169 0.942513i \(-0.608456\pi\)
−0.334169 + 0.942513i \(0.608456\pi\)
\(648\) 0 0
\(649\) 11.0000 0.431788
\(650\) 4.00000 + 6.92820i 0.156893 + 0.271746i
\(651\) 0 0
\(652\) −13.0000 + 22.5167i −0.509119 + 0.881820i
\(653\) 9.50000 16.4545i 0.371764 0.643914i −0.618073 0.786121i \(-0.712086\pi\)
0.989837 + 0.142207i \(0.0454198\pi\)
\(654\) 0 0
\(655\) 18.0000 + 31.1769i 0.703318 + 1.21818i
\(656\) −8.00000 −0.312348
\(657\) 0 0
\(658\) 56.0000 2.18311
\(659\) −10.0000 17.3205i −0.389545 0.674711i 0.602844 0.797859i \(-0.294034\pi\)
−0.992388 + 0.123148i \(0.960701\pi\)
\(660\) 0 0
\(661\) −18.5000 + 32.0429i −0.719567 + 1.24633i 0.241605 + 0.970375i \(0.422326\pi\)
−0.961172 + 0.275951i \(0.911007\pi\)
\(662\) −4.00000 + 6.92820i −0.155464 + 0.269272i
\(663\) 0 0
\(664\) 0 0
\(665\) −48.0000 −1.86136
\(666\) 0 0
\(667\) 0 0
\(668\) −18.0000 31.1769i −0.696441 1.20627i
\(669\) 0 0
\(670\) 8.00000 13.8564i 0.309067 0.535320i
\(671\) 0 0
\(672\) 0 0
\(673\) −10.0000 17.3205i −0.385472 0.667657i 0.606363 0.795188i \(-0.292628\pi\)
−0.991835 + 0.127532i \(0.959295\pi\)
\(674\) 64.0000 2.46519
\(675\) 0 0
\(676\) 6.00000 0.230769
\(677\) −15.0000 25.9808i −0.576497 0.998522i −0.995877 0.0907112i \(-0.971086\pi\)
0.419380 0.907811i \(-0.362247\pi\)
\(678\) 0 0
\(679\) −34.0000 + 58.8897i −1.30480 + 2.25998i
\(680\) 0 0
\(681\) 0 0
\(682\) 1.00000 + 1.73205i 0.0382920 + 0.0663237i
\(683\) −29.0000 −1.10965 −0.554827 0.831966i \(-0.687216\pi\)
−0.554827 + 0.831966i \(0.687216\pi\)
\(684\) 0 0
\(685\) 14.0000 0.534913
\(686\) −8.00000 13.8564i −0.305441 0.529040i
\(687\) 0 0
\(688\) 24.0000 41.5692i 0.914991 1.58481i
\(689\) 6.00000 10.3923i 0.228582 0.395915i
\(690\) 0 0
\(691\) 2.00000 + 3.46410i 0.0760836 + 0.131781i 0.901557 0.432660i \(-0.142425\pi\)
−0.825473 + 0.564441i \(0.809092\pi\)
\(692\) −12.0000 −0.456172
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −16.0000 27.7128i −0.606915 1.05121i
\(696\) 0 0
\(697\) 4.00000 6.92820i 0.151511 0.262424i
\(698\) −6.00000 + 10.3923i −0.227103 + 0.393355i
\(699\) 0 0
\(700\) 4.00000 + 6.92820i 0.151186 + 0.261861i
\(701\) 28.0000 1.05755 0.528773 0.848763i \(-0.322652\pi\)
0.528773 + 0.848763i \(0.322652\pi\)
\(702\) 0 0
\(703\) −18.0000 −0.678883
\(704\) −4.00000 6.92820i −0.150756 0.261116i
\(705\) 0 0
\(706\) 3.00000 5.19615i 0.112906 0.195560i
\(707\) 4.00000 6.92820i 0.150435 0.260562i
\(708\) 0 0
\(709\) −13.0000 22.5167i −0.488225 0.845631i 0.511683 0.859174i \(-0.329022\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) −60.0000 −2.25176
\(711\) 0 0
\(712\) 0 0
\(713\) −0.500000 0.866025i −0.0187251 0.0324329i
\(714\) 0 0
\(715\) 4.00000 6.92820i 0.149592 0.259100i
\(716\) −12.0000 + 20.7846i −0.448461 + 0.776757i
\(717\) 0 0
\(718\) 10.0000 + 17.3205i 0.373197 + 0.646396i
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) −17.0000 29.4449i −0.632674 1.09582i
\(723\) 0 0
\(724\) 14.0000 24.2487i 0.520306 0.901196i
\(725\) 0 0
\(726\) 0 0
\(727\) −10.5000 18.1865i −0.389423 0.674501i 0.602949 0.797780i \(-0.293992\pi\)
−0.992372 + 0.123279i \(0.960659\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −32.0000 −1.18437
\(731\) 24.0000 + 41.5692i 0.887672 + 1.53749i
\(732\) 0 0
\(733\) −3.00000 + 5.19615i −0.110808 + 0.191924i −0.916096 0.400959i \(-0.868677\pi\)
0.805289 + 0.592883i \(0.202010\pi\)
\(734\) 8.00000 13.8564i 0.295285 0.511449i
\(735\) 0 0
\(736\) 4.00000 + 6.92820i 0.147442 + 0.255377i
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) −6.00000 10.3923i −0.220564 0.382029i
\(741\) 0 0
\(742\) 12.0000 20.7846i 0.440534 0.763027i
\(743\) 5.00000 8.66025i 0.183432 0.317714i −0.759615 0.650373i \(-0.774613\pi\)
0.943047 + 0.332659i \(0.107946\pi\)
\(744\) 0 0
\(745\) 2.00000 + 3.46410i 0.0732743 + 0.126915i
\(746\) 44.0000 1.61095
\(747\) 0 0
\(748\) 8.00000 0.292509
\(749\) −12.0000 20.7846i −0.438470 0.759453i
\(750\) 0 0
\(751\) 2.50000 4.33013i 0.0912263 0.158009i −0.816801 0.576919i \(-0.804255\pi\)
0.908027 + 0.418911i \(0.137588\pi\)
\(752\) 14.0000 24.2487i 0.510527 0.884260i
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −43.0000 −1.56286 −0.781431 0.623992i \(-0.785510\pi\)
−0.781431 + 0.623992i \(0.785510\pi\)
\(758\) 29.0000 + 50.2295i 1.05333 + 1.82442i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) −20.0000 34.6410i −0.724049 1.25409i
\(764\) −40.0000 −1.44715
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 22.0000 + 38.1051i 0.794374 + 1.37590i
\(768\) 0 0
\(769\) 17.0000 29.4449i 0.613036 1.06181i −0.377690 0.925932i \(-0.623282\pi\)
0.990726 0.135877i \(-0.0433852\pi\)
\(770\) 8.00000 13.8564i 0.288300 0.499350i
\(771\) 0 0
\(772\) 14.0000 + 24.2487i 0.503871 + 0.872730i
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) 0 0
\(778\) 9.00000 15.5885i 0.322666 0.558873i
\(779\) 6.00000 10.3923i 0.214972 0.372343i
\(780\) 0 0
\(781\) −7.50000 12.9904i −0.268371 0.464832i
\(782\) −8.00000 −0.286079
\(783\) 0 0
\(784\) −36.0000 −1.28571
\(785\) −14.0000 24.2487i −0.499681 0.865474i
\(786\) 0 0
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) −2.00000 + 3.46410i −0.0712470 + 0.123404i
\(789\) 0 0
\(790\) 20.0000 + 34.6410i 0.711568 + 1.23247i
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 0 0
\(794\) −25.0000 43.3013i −0.887217 1.53670i
\(795\) 0 0
\(796\) 15.0000 25.9808i 0.531661 0.920864i
\(797\) −15.5000 + 26.8468i −0.549038 + 0.950962i 0.449303 + 0.893380i \(0.351673\pi\)
−0.998341 + 0.0575824i \(0.981661\pi\)
\(798\) 0 0
\(799\) 14.0000 + 24.2487i 0.495284 + 0.857858i
\(800\) 8.00000 0.282843
\(801\) 0 0
\(802\) −58.0000 −2.04805
\(803\) −4.00000 6.92820i −0.141157 0.244491i
\(804\) 0 0
\(805\) −4.00000 + 6.92820i −0.140981 + 0.244187i
\(806\) −4.00000 + 6.92820i −0.140894 + 0.244036i
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 40.0000 1.40459 0.702295 0.711886i \(-0.252159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3.00000 5.19615i 0.105150 0.182125i
\(815\) −13.0000 + 22.5167i −0.455370 + 0.788724i
\(816\) 0 0
\(817\) 36.0000 + 62.3538i 1.25948 + 2.18148i
\(818\) 36.0000 1.25871
\(819\) 0 0
\(820\) 8.00000 0.279372
\(821\) 26.0000 + 45.0333i 0.907406 + 1.57167i 0.817654 + 0.575710i \(0.195274\pi\)
0.0897520 + 0.995964i \(0.471393\pi\)
\(822\) 0 0
\(823\) 4.50000 7.79423i 0.156860 0.271690i −0.776875 0.629655i \(-0.783196\pi\)
0.933735 + 0.357966i \(0.116529\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 44.0000 + 76.2102i 1.53096 + 2.65169i
\(827\) 28.0000 0.973655 0.486828 0.873498i \(-0.338154\pi\)
0.486828 + 0.873498i \(0.338154\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 24.0000 + 41.5692i 0.833052 + 1.44289i
\(831\) 0 0
\(832\) 16.0000 27.7128i 0.554700 0.960769i
\(833\) 18.0000 31.1769i 0.623663 1.08022i
\(834\) 0 0
\(835\) −18.0000 31.1769i −0.622916 1.07892i
\(836\) 12.0000 0.415029
\(837\) 0 0
\(838\) 14.0000 0.483622
\(839\) −2.50000 4.33013i −0.0863096 0.149493i 0.819639 0.572880i \(-0.194174\pi\)
−0.905949 + 0.423388i \(0.860841\pi\)
\(840\) 0 0
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) −37.0000 + 64.0859i −1.27510 + 2.20855i
\(843\) 0 0
\(844\) 12.0000 + 20.7846i 0.413057 + 0.715436i
\(845\) 6.00000 0.206406
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) −6.00000 10.3923i −0.206041 0.356873i
\(849\) 0 0
\(850\) −4.00000 + 6.92820i −0.137199 + 0.237635i
\(851\) −1.50000 + 2.59808i −0.0514193 + 0.0890609i
\(852\) 0 0
\(853\) 8.00000 + 13.8564i 0.273915 + 0.474434i 0.969861 0.243660i \(-0.0783480\pi\)
−0.695946 + 0.718094i \(0.745015\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.0000 19.0526i −0.375753 0.650823i 0.614687 0.788771i \(-0.289283\pi\)
−0.990439 + 0.137948i \(0.955949\pi\)
\(858\) 0 0
\(859\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(860\) −24.0000 + 41.5692i −0.818393 + 1.41750i
\(861\) 0 0
\(862\) 12.0000 + 20.7846i 0.408722 + 0.707927i
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) −13.0000 22.5167i −0.441758 0.765147i
\(867\) 0 0
\(868\) −4.00000 + 6.92820i −0.135769 + 0.235159i
\(869\) −5.00000 + 8.66025i −0.169613 + 0.293779i
\(870\) 0 0
\(871\) 8.00000 + 13.8564i 0.271070 + 0.469506i
\(872\) 0 0
\(873\) 0 0
\(874\) −12.0000 −0.405906
\(875\) 24.0000 + 41.5692i 0.811348 + 1.40530i
\(876\) 0 0
\(877\) 9.00000 15.5885i 0.303908 0.526385i −0.673109 0.739543i \(-0.735042\pi\)
0.977018 + 0.213158i \(0.0683750\pi\)
\(878\) 20.0000 34.6410i 0.674967 1.16908i
\(879\) 0 0
\(880\) −4.00000 6.92820i −0.134840 0.233550i
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −41.0000 −1.37976 −0.689880 0.723924i \(-0.742337\pi\)
−0.689880 + 0.723924i \(0.742337\pi\)
\(884\) 16.0000 + 27.7128i 0.538138 + 0.932083i
\(885\) 0 0
\(886\) −41.0000 + 71.0141i −1.37742 + 2.38576i
\(887\) −26.0000 + 45.0333i −0.872995 + 1.51207i −0.0141108 + 0.999900i \(0.504492\pi\)
−0.858884 + 0.512170i \(0.828842\pi\)
\(888\) 0 0
\(889\) −4.00000 6.92820i −0.134156 0.232364i
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) 14.0000 0.468755
\(893\) 21.0000 + 36.3731i 0.702738 + 1.21718i
\(894\) 0 0
\(895\) −12.0000 + 20.7846i −0.401116 + 0.694753i
\(896\) 0 0
\(897\) 0 0
\(898\) −1.00000 1.73205i −0.0333704 0.0577993i
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 2.00000 + 3.46410i 0.0665927 + 0.115342i
\(903\) 0 0
\(904\) 0 0
\(905\) 14.0000 24.2487i 0.465376 0.806054i
\(906\) 0 0
\(907\) 30.0000 + 51.9615i 0.996134 + 1.72535i 0.574148 + 0.818752i \(0.305333\pi\)
0.421986 + 0.906602i \(0.361333\pi\)
\(908\) 24.0000 0.796468
\(909\) 0 0
\(910\) 64.0000 2.12158
\(911\) −28.5000 49.3634i −0.944247 1.63548i −0.757252 0.653123i \(-0.773458\pi\)
−0.186995 0.982361i \(-0.559875\pi\)
\(912\) 0 0
\(913\) −6.00000 + 10.3923i −0.198571 + 0.343935i
\(914\) 18.0000 31.1769i 0.595387 1.03124i
\(915\) 0 0
\(916\) −3.00000 5.19615i −0.0991228 0.171686i
\(917\) −72.0000 −2.37765
\(918\) 0 0
\(919\) 22.0000 0.725713 0.362857 0.931845i \(-0.381802\pi\)
0.362857 + 0.931845i \(0.381802\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −30.0000 + 51.9615i −0.987997 + 1.71126i
\(923\) 30.0000 51.9615i 0.987462 1.71033i
\(924\) 0 0
\(925\) 1.50000 + 2.59808i 0.0493197 + 0.0854242i
\(926\) −70.0000 −2.30034
\(927\) 0 0
\(928\) 0 0
\(929\) −1.50000 2.59808i −0.0492134 0.0852401i 0.840369 0.542014i \(-0.182338\pi\)
−0.889583 + 0.456774i \(0.849005\pi\)
\(930\) 0 0
\(931\) 27.0000 46.7654i 0.884889 1.53267i
\(932\) 0 0
\(933\) 0 0
\(934\) −36.0000 62.3538i −1.17796 2.04028i
\(935\) 8.00000 0.261628
\(936\) 0 0
\(937\) −16.0000 −0.522697 −0.261349 0.965244i \(-0.584167\pi\)
−0.261349 + 0.965244i \(0.584167\pi\)
\(938\) 16.0000 + 27.7128i 0.522419 + 0.904855i
\(939\) 0 0
\(940\) −14.0000 + 24.2487i −0.456630 + 0.790906i
\(941\) −12.0000 + 20.7846i −0.391189 + 0.677559i −0.992607 0.121376i \(-0.961269\pi\)
0.601418 + 0.798935i \(0.294603\pi\)
\(942\) 0 0
\(943\) −1.00000 1.73205i −0.0325645 0.0564033i
\(944\) 44.0000 1.43208
\(945\) 0 0
\(946\) −24.0000 −0.780307
\(947\) 6.00000 + 10.3923i 0.194974 + 0.337705i 0.946892 0.321552i \(-0.104204\pi\)
−0.751918 + 0.659256i \(0.770871\pi\)
\(948\) 0 0
\(949\) 16.0000 27.7128i 0.519382 0.899596i
\(950\) −6.00000 + 10.3923i −0.194666 + 0.337171i
\(951\) 0 0
\(952\) 0 0
\(953\) 20.0000 0.647864 0.323932 0.946080i \(-0.394995\pi\)
0.323932 + 0.946080i \(0.394995\pi\)
\(954\) 0 0
\(955\) −40.0000 −1.29437
\(956\) −24.0000 41.5692i −0.776215 1.34444i
\(957\) 0 0
\(958\) −34.0000 + 58.8897i −1.09849 + 1.90264i
\(959\) −14.0000 + 24.2487i −0.452084 + 0.783032i
\(960\) 0 0
\(961\) 15.0000 + 25.9808i 0.483871 + 0.838089i
\(962\) 24.0000 0.773791
\(963\) 0 0
\(964\) 20.0000 0.644157
\(965\) 14.0000 + 24.2487i 0.450676 + 0.780594i
\(966\) 0 0
\(967\) −29.0000 + 50.2295i −0.932577 + 1.61527i −0.153679 + 0.988121i \(0.549112\pi\)
−0.778898 + 0.627150i \(0.784221\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −34.0000 58.8897i −1.09167 1.89084i
\(971\) −35.0000 −1.12320 −0.561602 0.827408i \(-0.689815\pi\)
−0.561602 + 0.827408i \(0.689815\pi\)
\(972\) 0 0
\(973\) 64.0000 2.05175
\(974\) 19.0000 + 32.9090i 0.608799 + 1.05447i
\(975\) 0 0
\(976\) 0 0
\(977\) −13.5000 + 23.3827i −0.431903 + 0.748078i −0.997037 0.0769208i \(-0.975491\pi\)
0.565134 + 0.824999i \(0.308824\pi\)
\(978\) 0 0
\(979\) −1.50000 2.59808i −0.0479402 0.0830349i
\(980\) 36.0000 1.14998
\(981\) 0 0
\(982\) −20.0000 −0.638226
\(983\) 16.5000 + 28.5788i 0.526268 + 0.911523i 0.999532 + 0.0306024i \(0.00974257\pi\)
−0.473263 + 0.880921i \(0.656924\pi\)
\(984\) 0 0
\(985\) −2.00000 + 3.46410i −0.0637253 + 0.110375i
\(986\) 0 0
\(987\) 0 0
\(988\) 24.0000 + 41.5692i 0.763542 + 1.32249i
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 4.00000 + 6.92820i 0.127000 + 0.219971i
\(993\) 0 0
\(994\) 60.0000 103.923i 1.90308 3.29624i
\(995\) 15.0000 25.9808i 0.475532 0.823646i
\(996\) 0 0
\(997\) 26.0000 + 45.0333i 0.823428 + 1.42622i 0.903115 + 0.429400i \(0.141275\pi\)
−0.0796863 + 0.996820i \(0.525392\pi\)
\(998\) −50.0000 −1.58272
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.e.a.199.1 2
3.2 odd 2 99.2.e.c.67.1 yes 2
9.2 odd 6 99.2.e.c.34.1 2
9.4 even 3 891.2.a.h.1.1 1
9.5 odd 6 891.2.a.a.1.1 1
9.7 even 3 inner 297.2.e.a.100.1 2
33.32 even 2 1089.2.e.a.364.1 2
99.32 even 6 9801.2.a.l.1.1 1
99.65 even 6 1089.2.e.a.727.1 2
99.76 odd 6 9801.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.c.34.1 2 9.2 odd 6
99.2.e.c.67.1 yes 2 3.2 odd 2
297.2.e.a.100.1 2 9.7 even 3 inner
297.2.e.a.199.1 2 1.1 even 1 trivial
891.2.a.a.1.1 1 9.5 odd 6
891.2.a.h.1.1 1 9.4 even 3
1089.2.e.a.364.1 2 33.32 even 2
1089.2.e.a.727.1 2 99.65 even 6
9801.2.a.a.1.1 1 99.76 odd 6
9801.2.a.l.1.1 1 99.32 even 6