L(s) = 1 | + i·2-s + (0.866 − 0.5i)3-s − 4-s − 5-s + (0.5 + 0.866i)6-s − i·8-s + (0.499 − 0.866i)9-s − i·10-s + (−0.866 + 0.5i)12-s + (−0.866 + 0.5i)15-s + 16-s + (0.866 + 0.499i)18-s + 20-s − i·23-s + (−0.5 − 0.866i)24-s + 25-s + ⋯ |
L(s) = 1 | + i·2-s + (0.866 − 0.5i)3-s − 4-s − 5-s + (0.5 + 0.866i)6-s − i·8-s + (0.499 − 0.866i)9-s − i·10-s + (−0.866 + 0.5i)12-s + (−0.866 + 0.5i)15-s + 16-s + (0.866 + 0.499i)18-s + 20-s − i·23-s + (−0.5 − 0.866i)24-s + 25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.166559022\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.166559022\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT - T^{2} \) |
| 29 | \( 1 + 1.73iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - 1.73T + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 1.73iT - T^{2} \) |
| 67 | \( 1 - 1.73T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.73T + T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.608795264904144645485582901747, −8.011560546276154861912813544566, −7.60083521367494481202898000200, −6.74448794494007092530463453960, −6.21511784238440030845334729549, −4.98921568910743627821098000625, −4.15165194083351797669435110357, −3.55341432879724087061167590416, −2.41209299527945286093835537457, −0.73738088625517340643680494434,
1.36824532642635361137799105443, 2.58204967386421177430400888226, 3.40048269177227092426632527519, 3.93093551697515629863448623807, 4.76605611428809767672604443837, 5.48555630824489089686621082220, 7.03140100145216526966953526788, 7.71006759957523102522211795369, 8.447073111619063257827158125492, 8.989399579449989905570730291082