Properties

Label 2-2925-5.4-c1-0-34
Degree $2$
Conductor $2925$
Sign $-0.447 + 0.894i$
Analytic cond. $23.3562$
Root an. cond. $4.83282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.41i·2-s − 3.82·4-s + 2.41i·7-s + 4.41i·8-s − 6.41·11-s i·13-s + 5.82·14-s + 2.99·16-s + 3.82i·17-s + 3.65·19-s + 15.4i·22-s − 3.17i·23-s − 2.41·26-s − 9.24i·28-s − 0.171·29-s + ⋯
L(s)  = 1  − 1.70i·2-s − 1.91·4-s + 0.912i·7-s + 1.56i·8-s − 1.93·11-s − 0.277i·13-s + 1.55·14-s + 0.749·16-s + 0.928i·17-s + 0.838·19-s + 3.30i·22-s − 0.661i·23-s − 0.473·26-s − 1.74i·28-s − 0.0318·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2925\)    =    \(3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(23.3562\)
Root analytic conductor: \(4.83282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2925} (2224, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2925,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.202585783\)
\(L(\frac12)\) \(\approx\) \(1.202585783\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
13 \( 1 + iT \)
good2 \( 1 + 2.41iT - 2T^{2} \)
7 \( 1 - 2.41iT - 7T^{2} \)
11 \( 1 + 6.41T + 11T^{2} \)
17 \( 1 - 3.82iT - 17T^{2} \)
19 \( 1 - 3.65T + 19T^{2} \)
23 \( 1 + 3.17iT - 23T^{2} \)
29 \( 1 + 0.171T + 29T^{2} \)
31 \( 1 - 1.24T + 31T^{2} \)
37 \( 1 + 6iT - 37T^{2} \)
41 \( 1 - 5.65T + 41T^{2} \)
43 \( 1 + 0.828iT - 43T^{2} \)
47 \( 1 + 3.58iT - 47T^{2} \)
53 \( 1 - 3iT - 53T^{2} \)
59 \( 1 - 13.2T + 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 + 2.75iT - 67T^{2} \)
71 \( 1 - 9.31T + 71T^{2} \)
73 \( 1 - 6iT - 73T^{2} \)
79 \( 1 - 6T + 79T^{2} \)
83 \( 1 - 6.89iT - 83T^{2} \)
89 \( 1 + 8.48T + 89T^{2} \)
97 \( 1 + 0.828iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.586103189439635153102392550469, −8.202582683224961598146106150919, −7.17861278600194131431624067180, −5.76801009423955381661991631722, −5.31749704677881817972305373803, −4.39038684146317382678329003968, −3.38739930268384852964131204809, −2.58613182662098985776943457755, −2.08857770246255187522710336611, −0.62574131222291821066748274744, 0.68528087287477569589223603097, 2.56851517990264228619921251063, 3.70963507536633233598538881534, 4.83190338911288352018573193221, 5.15527496094235511277281412854, 6.01156856157052536703001198748, 6.92822413805576765790521697281, 7.54741624523538945764605785839, 7.82909666470777322829615592069, 8.694292126680167947652987933539

Graph of the $Z$-function along the critical line