Properties

Label 2925.2.c.q.2224.1
Level $2925$
Weight $2$
Character 2925.2224
Analytic conductor $23.356$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2925,2,Mod(2224,2925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2925.2224"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,0,-20,0,0,12,0,12,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 325)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2224.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2925.2224
Dual form 2925.2.c.q.2224.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41421i q^{2} -3.82843 q^{4} +2.41421i q^{7} +4.41421i q^{8} -6.41421 q^{11} -1.00000i q^{13} +5.82843 q^{14} +3.00000 q^{16} +3.82843i q^{17} +3.65685 q^{19} +15.4853i q^{22} -3.17157i q^{23} -2.41421 q^{26} -9.24264i q^{28} -0.171573 q^{29} +1.24264 q^{31} +1.58579i q^{32} +9.24264 q^{34} -6.00000i q^{37} -8.82843i q^{38} +5.65685 q^{41} -0.828427i q^{43} +24.5563 q^{44} -7.65685 q^{46} -3.58579i q^{47} +1.17157 q^{49} +3.82843i q^{52} +3.00000i q^{53} -10.6569 q^{56} +0.414214i q^{58} +13.2426 q^{59} +1.00000 q^{61} -3.00000i q^{62} +9.82843 q^{64} -2.75736i q^{67} -14.6569i q^{68} +9.31371 q^{71} +6.00000i q^{73} -14.4853 q^{74} -14.0000 q^{76} -15.4853i q^{77} +6.00000 q^{79} -13.6569i q^{82} +6.89949i q^{83} -2.00000 q^{86} -28.3137i q^{88} -8.48528 q^{89} +2.41421 q^{91} +12.1421i q^{92} -8.65685 q^{94} -0.828427i q^{97} -2.82843i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 20 q^{11} + 12 q^{14} + 12 q^{16} - 8 q^{19} - 4 q^{26} - 12 q^{29} - 12 q^{31} + 20 q^{34} + 36 q^{44} - 8 q^{46} + 16 q^{49} - 20 q^{56} + 36 q^{59} + 4 q^{61} + 28 q^{64} - 8 q^{71} - 24 q^{74}+ \cdots - 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(2251\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.41421i − 1.70711i −0.521005 0.853553i \(-0.674443\pi\)
0.521005 0.853553i \(-0.325557\pi\)
\(3\) 0 0
\(4\) −3.82843 −1.91421
\(5\) 0 0
\(6\) 0 0
\(7\) 2.41421i 0.912487i 0.889855 + 0.456243i \(0.150805\pi\)
−0.889855 + 0.456243i \(0.849195\pi\)
\(8\) 4.41421i 1.56066i
\(9\) 0 0
\(10\) 0 0
\(11\) −6.41421 −1.93396 −0.966979 0.254856i \(-0.917972\pi\)
−0.966979 + 0.254856i \(0.917972\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 5.82843 1.55771
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 3.82843i 0.928530i 0.885696 + 0.464265i \(0.153681\pi\)
−0.885696 + 0.464265i \(0.846319\pi\)
\(18\) 0 0
\(19\) 3.65685 0.838940 0.419470 0.907769i \(-0.362216\pi\)
0.419470 + 0.907769i \(0.362216\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 15.4853i 3.30147i
\(23\) − 3.17157i − 0.661319i −0.943750 0.330659i \(-0.892729\pi\)
0.943750 0.330659i \(-0.107271\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.41421 −0.473466
\(27\) 0 0
\(28\) − 9.24264i − 1.74669i
\(29\) −0.171573 −0.0318603 −0.0159301 0.999873i \(-0.505071\pi\)
−0.0159301 + 0.999873i \(0.505071\pi\)
\(30\) 0 0
\(31\) 1.24264 0.223185 0.111592 0.993754i \(-0.464405\pi\)
0.111592 + 0.993754i \(0.464405\pi\)
\(32\) 1.58579i 0.280330i
\(33\) 0 0
\(34\) 9.24264 1.58510
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.00000i − 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) − 8.82843i − 1.43216i
\(39\) 0 0
\(40\) 0 0
\(41\) 5.65685 0.883452 0.441726 0.897150i \(-0.354366\pi\)
0.441726 + 0.897150i \(0.354366\pi\)
\(42\) 0 0
\(43\) − 0.828427i − 0.126334i −0.998003 0.0631670i \(-0.979880\pi\)
0.998003 0.0631670i \(-0.0201201\pi\)
\(44\) 24.5563 3.70201
\(45\) 0 0
\(46\) −7.65685 −1.12894
\(47\) − 3.58579i − 0.523041i −0.965198 0.261520i \(-0.915776\pi\)
0.965198 0.261520i \(-0.0842239\pi\)
\(48\) 0 0
\(49\) 1.17157 0.167368
\(50\) 0 0
\(51\) 0 0
\(52\) 3.82843i 0.530907i
\(53\) 3.00000i 0.412082i 0.978543 + 0.206041i \(0.0660580\pi\)
−0.978543 + 0.206041i \(0.933942\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −10.6569 −1.42408
\(57\) 0 0
\(58\) 0.414214i 0.0543889i
\(59\) 13.2426 1.72404 0.862022 0.506870i \(-0.169198\pi\)
0.862022 + 0.506870i \(0.169198\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) − 3.00000i − 0.381000i
\(63\) 0 0
\(64\) 9.82843 1.22855
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.75736i − 0.336865i −0.985713 0.168433i \(-0.946129\pi\)
0.985713 0.168433i \(-0.0538705\pi\)
\(68\) − 14.6569i − 1.77740i
\(69\) 0 0
\(70\) 0 0
\(71\) 9.31371 1.10533 0.552667 0.833402i \(-0.313610\pi\)
0.552667 + 0.833402i \(0.313610\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) −14.4853 −1.68388
\(75\) 0 0
\(76\) −14.0000 −1.60591
\(77\) − 15.4853i − 1.76471i
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 13.6569i − 1.50815i
\(83\) 6.89949i 0.757318i 0.925536 + 0.378659i \(0.123615\pi\)
−0.925536 + 0.378659i \(0.876385\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) − 28.3137i − 3.01825i
\(89\) −8.48528 −0.899438 −0.449719 0.893170i \(-0.648476\pi\)
−0.449719 + 0.893170i \(0.648476\pi\)
\(90\) 0 0
\(91\) 2.41421 0.253078
\(92\) 12.1421i 1.26591i
\(93\) 0 0
\(94\) −8.65685 −0.892886
\(95\) 0 0
\(96\) 0 0
\(97\) − 0.828427i − 0.0841140i −0.999115 0.0420570i \(-0.986609\pi\)
0.999115 0.0420570i \(-0.0133911\pi\)
\(98\) − 2.82843i − 0.285714i
\(99\) 0 0
\(100\) 0 0
\(101\) 6.65685 0.662382 0.331191 0.943564i \(-0.392550\pi\)
0.331191 + 0.943564i \(0.392550\pi\)
\(102\) 0 0
\(103\) − 13.6569i − 1.34565i −0.739802 0.672825i \(-0.765081\pi\)
0.739802 0.672825i \(-0.234919\pi\)
\(104\) 4.41421 0.432849
\(105\) 0 0
\(106\) 7.24264 0.703467
\(107\) − 16.1421i − 1.56052i −0.625456 0.780260i \(-0.715087\pi\)
0.625456 0.780260i \(-0.284913\pi\)
\(108\) 0 0
\(109\) 16.4853 1.57900 0.789502 0.613748i \(-0.210339\pi\)
0.789502 + 0.613748i \(0.210339\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.24264i 0.684365i
\(113\) − 11.6569i − 1.09658i −0.836287 0.548292i \(-0.815278\pi\)
0.836287 0.548292i \(-0.184722\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.656854 0.0609874
\(117\) 0 0
\(118\) − 31.9706i − 2.94313i
\(119\) −9.24264 −0.847271
\(120\) 0 0
\(121\) 30.1421 2.74019
\(122\) − 2.41421i − 0.218573i
\(123\) 0 0
\(124\) −4.75736 −0.427223
\(125\) 0 0
\(126\) 0 0
\(127\) − 3.65685i − 0.324493i −0.986750 0.162247i \(-0.948126\pi\)
0.986750 0.162247i \(-0.0518740\pi\)
\(128\) − 20.5563i − 1.81694i
\(129\) 0 0
\(130\) 0 0
\(131\) −8.48528 −0.741362 −0.370681 0.928760i \(-0.620876\pi\)
−0.370681 + 0.928760i \(0.620876\pi\)
\(132\) 0 0
\(133\) 8.82843i 0.765522i
\(134\) −6.65685 −0.575065
\(135\) 0 0
\(136\) −16.8995 −1.44912
\(137\) − 2.82843i − 0.241649i −0.992674 0.120824i \(-0.961446\pi\)
0.992674 0.120824i \(-0.0385538\pi\)
\(138\) 0 0
\(139\) 18.4853 1.56790 0.783951 0.620823i \(-0.213202\pi\)
0.783951 + 0.620823i \(0.213202\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 22.4853i − 1.88692i
\(143\) 6.41421i 0.536383i
\(144\) 0 0
\(145\) 0 0
\(146\) 14.4853 1.19881
\(147\) 0 0
\(148\) 22.9706i 1.88817i
\(149\) 8.82843 0.723253 0.361626 0.932323i \(-0.382222\pi\)
0.361626 + 0.932323i \(0.382222\pi\)
\(150\) 0 0
\(151\) −8.75736 −0.712664 −0.356332 0.934359i \(-0.615973\pi\)
−0.356332 + 0.934359i \(0.615973\pi\)
\(152\) 16.1421i 1.30930i
\(153\) 0 0
\(154\) −37.3848 −3.01255
\(155\) 0 0
\(156\) 0 0
\(157\) 23.4853i 1.87433i 0.348887 + 0.937165i \(0.386560\pi\)
−0.348887 + 0.937165i \(0.613440\pi\)
\(158\) − 14.4853i − 1.15239i
\(159\) 0 0
\(160\) 0 0
\(161\) 7.65685 0.603445
\(162\) 0 0
\(163\) − 10.0000i − 0.783260i −0.920123 0.391630i \(-0.871911\pi\)
0.920123 0.391630i \(-0.128089\pi\)
\(164\) −21.6569 −1.69112
\(165\) 0 0
\(166\) 16.6569 1.29282
\(167\) 5.31371i 0.411187i 0.978637 + 0.205594i \(0.0659125\pi\)
−0.978637 + 0.205594i \(0.934088\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 3.17157i 0.241830i
\(173\) 18.6569i 1.41845i 0.704980 + 0.709227i \(0.250956\pi\)
−0.704980 + 0.709227i \(0.749044\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −19.2426 −1.45047
\(177\) 0 0
\(178\) 20.4853i 1.53544i
\(179\) 0.686292 0.0512958 0.0256479 0.999671i \(-0.491835\pi\)
0.0256479 + 0.999671i \(0.491835\pi\)
\(180\) 0 0
\(181\) −17.4853 −1.29967 −0.649835 0.760075i \(-0.725162\pi\)
−0.649835 + 0.760075i \(0.725162\pi\)
\(182\) − 5.82843i − 0.432032i
\(183\) 0 0
\(184\) 14.0000 1.03209
\(185\) 0 0
\(186\) 0 0
\(187\) − 24.5563i − 1.79574i
\(188\) 13.7279i 1.00121i
\(189\) 0 0
\(190\) 0 0
\(191\) −25.3137 −1.83164 −0.915818 0.401594i \(-0.868456\pi\)
−0.915818 + 0.401594i \(0.868456\pi\)
\(192\) 0 0
\(193\) − 1.65685i − 0.119263i −0.998220 0.0596315i \(-0.981007\pi\)
0.998220 0.0596315i \(-0.0189926\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −4.48528 −0.320377
\(197\) 12.0000i 0.854965i 0.904024 + 0.427482i \(0.140599\pi\)
−0.904024 + 0.427482i \(0.859401\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 16.0711i − 1.13076i
\(203\) − 0.414214i − 0.0290721i
\(204\) 0 0
\(205\) 0 0
\(206\) −32.9706 −2.29717
\(207\) 0 0
\(208\) − 3.00000i − 0.208013i
\(209\) −23.4558 −1.62247
\(210\) 0 0
\(211\) 17.7990 1.22533 0.612666 0.790342i \(-0.290097\pi\)
0.612666 + 0.790342i \(0.290097\pi\)
\(212\) − 11.4853i − 0.788812i
\(213\) 0 0
\(214\) −38.9706 −2.66397
\(215\) 0 0
\(216\) 0 0
\(217\) 3.00000i 0.203653i
\(218\) − 39.7990i − 2.69553i
\(219\) 0 0
\(220\) 0 0
\(221\) 3.82843 0.257528
\(222\) 0 0
\(223\) 10.9706i 0.734643i 0.930094 + 0.367322i \(0.119725\pi\)
−0.930094 + 0.367322i \(0.880275\pi\)
\(224\) −3.82843 −0.255798
\(225\) 0 0
\(226\) −28.1421 −1.87199
\(227\) 8.89949i 0.590680i 0.955392 + 0.295340i \(0.0954330\pi\)
−0.955392 + 0.295340i \(0.904567\pi\)
\(228\) 0 0
\(229\) 4.82843 0.319071 0.159536 0.987192i \(-0.449000\pi\)
0.159536 + 0.987192i \(0.449000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 0.757359i − 0.0497231i
\(233\) 20.6274i 1.35135i 0.737201 + 0.675674i \(0.236147\pi\)
−0.737201 + 0.675674i \(0.763853\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −50.6985 −3.30019
\(237\) 0 0
\(238\) 22.3137i 1.44638i
\(239\) 23.5858 1.52564 0.762819 0.646612i \(-0.223815\pi\)
0.762819 + 0.646612i \(0.223815\pi\)
\(240\) 0 0
\(241\) 4.97056 0.320182 0.160091 0.987102i \(-0.448821\pi\)
0.160091 + 0.987102i \(0.448821\pi\)
\(242\) − 72.7696i − 4.67780i
\(243\) 0 0
\(244\) −3.82843 −0.245090
\(245\) 0 0
\(246\) 0 0
\(247\) − 3.65685i − 0.232680i
\(248\) 5.48528i 0.348316i
\(249\) 0 0
\(250\) 0 0
\(251\) 5.65685 0.357057 0.178529 0.983935i \(-0.442866\pi\)
0.178529 + 0.983935i \(0.442866\pi\)
\(252\) 0 0
\(253\) 20.3431i 1.27896i
\(254\) −8.82843 −0.553945
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 6.65685i 0.415243i 0.978209 + 0.207622i \(0.0665723\pi\)
−0.978209 + 0.207622i \(0.933428\pi\)
\(258\) 0 0
\(259\) 14.4853 0.900072
\(260\) 0 0
\(261\) 0 0
\(262\) 20.4853i 1.26558i
\(263\) − 26.1421i − 1.61199i −0.591920 0.805997i \(-0.701630\pi\)
0.591920 0.805997i \(-0.298370\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 21.3137 1.30683
\(267\) 0 0
\(268\) 10.5563i 0.644832i
\(269\) 15.1421 0.923232 0.461616 0.887080i \(-0.347270\pi\)
0.461616 + 0.887080i \(0.347270\pi\)
\(270\) 0 0
\(271\) −25.7279 −1.56286 −0.781430 0.623993i \(-0.785509\pi\)
−0.781430 + 0.623993i \(0.785509\pi\)
\(272\) 11.4853i 0.696397i
\(273\) 0 0
\(274\) −6.82843 −0.412520
\(275\) 0 0
\(276\) 0 0
\(277\) 9.31371i 0.559607i 0.960057 + 0.279803i \(0.0902692\pi\)
−0.960057 + 0.279803i \(0.909731\pi\)
\(278\) − 44.6274i − 2.67657i
\(279\) 0 0
\(280\) 0 0
\(281\) −4.82843 −0.288040 −0.144020 0.989575i \(-0.546003\pi\)
−0.144020 + 0.989575i \(0.546003\pi\)
\(282\) 0 0
\(283\) 22.4853i 1.33661i 0.743887 + 0.668306i \(0.232980\pi\)
−0.743887 + 0.668306i \(0.767020\pi\)
\(284\) −35.6569 −2.11585
\(285\) 0 0
\(286\) 15.4853 0.915664
\(287\) 13.6569i 0.806139i
\(288\) 0 0
\(289\) 2.34315 0.137832
\(290\) 0 0
\(291\) 0 0
\(292\) − 22.9706i − 1.34425i
\(293\) 8.82843i 0.515762i 0.966177 + 0.257881i \(0.0830243\pi\)
−0.966177 + 0.257881i \(0.916976\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 26.4853 1.53943
\(297\) 0 0
\(298\) − 21.3137i − 1.23467i
\(299\) −3.17157 −0.183417
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 21.1421i 1.21659i
\(303\) 0 0
\(304\) 10.9706 0.629205
\(305\) 0 0
\(306\) 0 0
\(307\) − 9.31371i − 0.531561i −0.964034 0.265781i \(-0.914370\pi\)
0.964034 0.265781i \(-0.0856297\pi\)
\(308\) 59.2843i 3.37803i
\(309\) 0 0
\(310\) 0 0
\(311\) −9.51472 −0.539530 −0.269765 0.962926i \(-0.586946\pi\)
−0.269765 + 0.962926i \(0.586946\pi\)
\(312\) 0 0
\(313\) − 2.85786i − 0.161536i −0.996733 0.0807680i \(-0.974263\pi\)
0.996733 0.0807680i \(-0.0257373\pi\)
\(314\) 56.6985 3.19968
\(315\) 0 0
\(316\) −22.9706 −1.29220
\(317\) − 20.1421i − 1.13130i −0.824647 0.565648i \(-0.808626\pi\)
0.824647 0.565648i \(-0.191374\pi\)
\(318\) 0 0
\(319\) 1.10051 0.0616165
\(320\) 0 0
\(321\) 0 0
\(322\) − 18.4853i − 1.03014i
\(323\) 14.0000i 0.778981i
\(324\) 0 0
\(325\) 0 0
\(326\) −24.1421 −1.33711
\(327\) 0 0
\(328\) 24.9706i 1.37877i
\(329\) 8.65685 0.477268
\(330\) 0 0
\(331\) 27.6569 1.52016 0.760079 0.649831i \(-0.225160\pi\)
0.760079 + 0.649831i \(0.225160\pi\)
\(332\) − 26.4142i − 1.44967i
\(333\) 0 0
\(334\) 12.8284 0.701940
\(335\) 0 0
\(336\) 0 0
\(337\) − 20.7990i − 1.13299i −0.824064 0.566497i \(-0.808298\pi\)
0.824064 0.566497i \(-0.191702\pi\)
\(338\) 2.41421i 0.131316i
\(339\) 0 0
\(340\) 0 0
\(341\) −7.97056 −0.431630
\(342\) 0 0
\(343\) 19.7279i 1.06521i
\(344\) 3.65685 0.197164
\(345\) 0 0
\(346\) 45.0416 2.42145
\(347\) 19.4558i 1.04444i 0.852809 + 0.522222i \(0.174897\pi\)
−0.852809 + 0.522222i \(0.825103\pi\)
\(348\) 0 0
\(349\) −35.4558 −1.89791 −0.948954 0.315415i \(-0.897856\pi\)
−0.948954 + 0.315415i \(0.897856\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 10.1716i − 0.542147i
\(353\) 26.1421i 1.39141i 0.718330 + 0.695703i \(0.244907\pi\)
−0.718330 + 0.695703i \(0.755093\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 32.4853 1.72172
\(357\) 0 0
\(358\) − 1.65685i − 0.0875675i
\(359\) 21.3848 1.12865 0.564323 0.825554i \(-0.309137\pi\)
0.564323 + 0.825554i \(0.309137\pi\)
\(360\) 0 0
\(361\) −5.62742 −0.296180
\(362\) 42.2132i 2.21868i
\(363\) 0 0
\(364\) −9.24264 −0.484446
\(365\) 0 0
\(366\) 0 0
\(367\) − 34.8284i − 1.81803i −0.416764 0.909015i \(-0.636836\pi\)
0.416764 0.909015i \(-0.363164\pi\)
\(368\) − 9.51472i − 0.495989i
\(369\) 0 0
\(370\) 0 0
\(371\) −7.24264 −0.376019
\(372\) 0 0
\(373\) − 1.14214i − 0.0591375i −0.999563 0.0295688i \(-0.990587\pi\)
0.999563 0.0295688i \(-0.00941340\pi\)
\(374\) −59.2843 −3.06552
\(375\) 0 0
\(376\) 15.8284 0.816289
\(377\) 0.171573i 0.00883645i
\(378\) 0 0
\(379\) 31.8701 1.63705 0.818527 0.574467i \(-0.194791\pi\)
0.818527 + 0.574467i \(0.194791\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 61.1127i 3.12680i
\(383\) 27.6569i 1.41320i 0.707614 + 0.706600i \(0.249772\pi\)
−0.707614 + 0.706600i \(0.750228\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) 3.17157i 0.161012i
\(389\) 28.6274 1.45147 0.725734 0.687976i \(-0.241500\pi\)
0.725734 + 0.687976i \(0.241500\pi\)
\(390\) 0 0
\(391\) 12.1421 0.614054
\(392\) 5.17157i 0.261204i
\(393\) 0 0
\(394\) 28.9706 1.45952
\(395\) 0 0
\(396\) 0 0
\(397\) 7.65685i 0.384286i 0.981367 + 0.192143i \(0.0615438\pi\)
−0.981367 + 0.192143i \(0.938456\pi\)
\(398\) 24.1421i 1.21014i
\(399\) 0 0
\(400\) 0 0
\(401\) 3.85786 0.192653 0.0963263 0.995350i \(-0.469291\pi\)
0.0963263 + 0.995350i \(0.469291\pi\)
\(402\) 0 0
\(403\) − 1.24264i − 0.0619003i
\(404\) −25.4853 −1.26794
\(405\) 0 0
\(406\) −1.00000 −0.0496292
\(407\) 38.4853i 1.90764i
\(408\) 0 0
\(409\) 10.8284 0.535431 0.267716 0.963498i \(-0.413731\pi\)
0.267716 + 0.963498i \(0.413731\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 52.2843i 2.57586i
\(413\) 31.9706i 1.57317i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.58579 0.0777496
\(417\) 0 0
\(418\) 56.6274i 2.76974i
\(419\) 22.8284 1.11524 0.557621 0.830096i \(-0.311714\pi\)
0.557621 + 0.830096i \(0.311714\pi\)
\(420\) 0 0
\(421\) −16.9706 −0.827095 −0.413547 0.910483i \(-0.635710\pi\)
−0.413547 + 0.910483i \(0.635710\pi\)
\(422\) − 42.9706i − 2.09177i
\(423\) 0 0
\(424\) −13.2426 −0.643119
\(425\) 0 0
\(426\) 0 0
\(427\) 2.41421i 0.116832i
\(428\) 61.7990i 2.98717i
\(429\) 0 0
\(430\) 0 0
\(431\) 8.34315 0.401875 0.200938 0.979604i \(-0.435601\pi\)
0.200938 + 0.979604i \(0.435601\pi\)
\(432\) 0 0
\(433\) − 16.3431i − 0.785401i −0.919666 0.392701i \(-0.871541\pi\)
0.919666 0.392701i \(-0.128459\pi\)
\(434\) 7.24264 0.347658
\(435\) 0 0
\(436\) −63.1127 −3.02255
\(437\) − 11.5980i − 0.554807i
\(438\) 0 0
\(439\) −14.0000 −0.668184 −0.334092 0.942541i \(-0.608430\pi\)
−0.334092 + 0.942541i \(0.608430\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 9.24264i − 0.439628i
\(443\) − 29.7990i − 1.41579i −0.706316 0.707896i \(-0.749644\pi\)
0.706316 0.707896i \(-0.250356\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 26.4853 1.25411
\(447\) 0 0
\(448\) 23.7279i 1.12104i
\(449\) −5.17157 −0.244062 −0.122031 0.992526i \(-0.538941\pi\)
−0.122031 + 0.992526i \(0.538941\pi\)
\(450\) 0 0
\(451\) −36.2843 −1.70856
\(452\) 44.6274i 2.09910i
\(453\) 0 0
\(454\) 21.4853 1.00835
\(455\) 0 0
\(456\) 0 0
\(457\) 8.48528i 0.396925i 0.980109 + 0.198462i \(0.0635948\pi\)
−0.980109 + 0.198462i \(0.936405\pi\)
\(458\) − 11.6569i − 0.544689i
\(459\) 0 0
\(460\) 0 0
\(461\) 19.4558 0.906149 0.453074 0.891473i \(-0.350327\pi\)
0.453074 + 0.891473i \(0.350327\pi\)
\(462\) 0 0
\(463\) − 28.5563i − 1.32713i −0.748120 0.663563i \(-0.769043\pi\)
0.748120 0.663563i \(-0.230957\pi\)
\(464\) −0.514719 −0.0238952
\(465\) 0 0
\(466\) 49.7990 2.30689
\(467\) − 31.1127i − 1.43972i −0.694117 0.719862i \(-0.744205\pi\)
0.694117 0.719862i \(-0.255795\pi\)
\(468\) 0 0
\(469\) 6.65685 0.307385
\(470\) 0 0
\(471\) 0 0
\(472\) 58.4558i 2.69065i
\(473\) 5.31371i 0.244325i
\(474\) 0 0
\(475\) 0 0
\(476\) 35.3848 1.62186
\(477\) 0 0
\(478\) − 56.9411i − 2.60443i
\(479\) 14.2721 0.652108 0.326054 0.945351i \(-0.394281\pi\)
0.326054 + 0.945351i \(0.394281\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) − 12.0000i − 0.546585i
\(483\) 0 0
\(484\) −115.397 −5.24532
\(485\) 0 0
\(486\) 0 0
\(487\) − 42.2132i − 1.91286i −0.291957 0.956431i \(-0.594306\pi\)
0.291957 0.956431i \(-0.405694\pi\)
\(488\) 4.41421i 0.199822i
\(489\) 0 0
\(490\) 0 0
\(491\) −11.1716 −0.504166 −0.252083 0.967706i \(-0.581116\pi\)
−0.252083 + 0.967706i \(0.581116\pi\)
\(492\) 0 0
\(493\) − 0.656854i − 0.0295832i
\(494\) −8.82843 −0.397210
\(495\) 0 0
\(496\) 3.72792 0.167389
\(497\) 22.4853i 1.00860i
\(498\) 0 0
\(499\) −2.55635 −0.114438 −0.0572190 0.998362i \(-0.518223\pi\)
−0.0572190 + 0.998362i \(0.518223\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 13.6569i − 0.609535i
\(503\) − 14.6274i − 0.652204i −0.945335 0.326102i \(-0.894265\pi\)
0.945335 0.326102i \(-0.105735\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 49.1127 2.18333
\(507\) 0 0
\(508\) 14.0000i 0.621150i
\(509\) 14.6274 0.648349 0.324174 0.945997i \(-0.394914\pi\)
0.324174 + 0.945997i \(0.394914\pi\)
\(510\) 0 0
\(511\) −14.4853 −0.640791
\(512\) 31.2426i 1.38074i
\(513\) 0 0
\(514\) 16.0711 0.708864
\(515\) 0 0
\(516\) 0 0
\(517\) 23.0000i 1.01154i
\(518\) − 34.9706i − 1.53652i
\(519\) 0 0
\(520\) 0 0
\(521\) −0.343146 −0.0150335 −0.00751674 0.999972i \(-0.502393\pi\)
−0.00751674 + 0.999972i \(0.502393\pi\)
\(522\) 0 0
\(523\) − 6.00000i − 0.262362i −0.991358 0.131181i \(-0.958123\pi\)
0.991358 0.131181i \(-0.0418769\pi\)
\(524\) 32.4853 1.41913
\(525\) 0 0
\(526\) −63.1127 −2.75184
\(527\) 4.75736i 0.207234i
\(528\) 0 0
\(529\) 12.9411 0.562658
\(530\) 0 0
\(531\) 0 0
\(532\) − 33.7990i − 1.46537i
\(533\) − 5.65685i − 0.245026i
\(534\) 0 0
\(535\) 0 0
\(536\) 12.1716 0.525732
\(537\) 0 0
\(538\) − 36.5563i − 1.57606i
\(539\) −7.51472 −0.323682
\(540\) 0 0
\(541\) 33.7990 1.45313 0.726566 0.687097i \(-0.241115\pi\)
0.726566 + 0.687097i \(0.241115\pi\)
\(542\) 62.1127i 2.66797i
\(543\) 0 0
\(544\) −6.07107 −0.260295
\(545\) 0 0
\(546\) 0 0
\(547\) 28.4853i 1.21794i 0.793192 + 0.608971i \(0.208418\pi\)
−0.793192 + 0.608971i \(0.791582\pi\)
\(548\) 10.8284i 0.462567i
\(549\) 0 0
\(550\) 0 0
\(551\) −0.627417 −0.0267289
\(552\) 0 0
\(553\) 14.4853i 0.615977i
\(554\) 22.4853 0.955308
\(555\) 0 0
\(556\) −70.7696 −3.00130
\(557\) − 27.3137i − 1.15732i −0.815569 0.578659i \(-0.803576\pi\)
0.815569 0.578659i \(-0.196424\pi\)
\(558\) 0 0
\(559\) −0.828427 −0.0350387
\(560\) 0 0
\(561\) 0 0
\(562\) 11.6569i 0.491715i
\(563\) − 18.0000i − 0.758610i −0.925272 0.379305i \(-0.876163\pi\)
0.925272 0.379305i \(-0.123837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 54.2843 2.28174
\(567\) 0 0
\(568\) 41.1127i 1.72505i
\(569\) −35.2843 −1.47919 −0.739597 0.673050i \(-0.764984\pi\)
−0.739597 + 0.673050i \(0.764984\pi\)
\(570\) 0 0
\(571\) −2.00000 −0.0836974 −0.0418487 0.999124i \(-0.513325\pi\)
−0.0418487 + 0.999124i \(0.513325\pi\)
\(572\) − 24.5563i − 1.02675i
\(573\) 0 0
\(574\) 32.9706 1.37616
\(575\) 0 0
\(576\) 0 0
\(577\) − 7.17157i − 0.298556i −0.988795 0.149278i \(-0.952305\pi\)
0.988795 0.149278i \(-0.0476950\pi\)
\(578\) − 5.65685i − 0.235294i
\(579\) 0 0
\(580\) 0 0
\(581\) −16.6569 −0.691043
\(582\) 0 0
\(583\) − 19.2426i − 0.796949i
\(584\) −26.4853 −1.09597
\(585\) 0 0
\(586\) 21.3137 0.880461
\(587\) − 14.4142i − 0.594938i −0.954731 0.297469i \(-0.903857\pi\)
0.954731 0.297469i \(-0.0961425\pi\)
\(588\) 0 0
\(589\) 4.54416 0.187239
\(590\) 0 0
\(591\) 0 0
\(592\) − 18.0000i − 0.739795i
\(593\) 19.6569i 0.807210i 0.914933 + 0.403605i \(0.132243\pi\)
−0.914933 + 0.403605i \(0.867757\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −33.7990 −1.38446
\(597\) 0 0
\(598\) 7.65685i 0.313112i
\(599\) −3.51472 −0.143608 −0.0718038 0.997419i \(-0.522876\pi\)
−0.0718038 + 0.997419i \(0.522876\pi\)
\(600\) 0 0
\(601\) 13.8284 0.564073 0.282037 0.959404i \(-0.408990\pi\)
0.282037 + 0.959404i \(0.408990\pi\)
\(602\) − 4.82843i − 0.196792i
\(603\) 0 0
\(604\) 33.5269 1.36419
\(605\) 0 0
\(606\) 0 0
\(607\) − 21.5147i − 0.873255i −0.899642 0.436628i \(-0.856173\pi\)
0.899642 0.436628i \(-0.143827\pi\)
\(608\) 5.79899i 0.235180i
\(609\) 0 0
\(610\) 0 0
\(611\) −3.58579 −0.145065
\(612\) 0 0
\(613\) 12.8284i 0.518135i 0.965859 + 0.259068i \(0.0834153\pi\)
−0.965859 + 0.259068i \(0.916585\pi\)
\(614\) −22.4853 −0.907432
\(615\) 0 0
\(616\) 68.3553 2.75412
\(617\) − 6.00000i − 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 0 0
\(619\) −22.9706 −0.923265 −0.461632 0.887071i \(-0.652736\pi\)
−0.461632 + 0.887071i \(0.652736\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 22.9706i 0.921036i
\(623\) − 20.4853i − 0.820725i
\(624\) 0 0
\(625\) 0 0
\(626\) −6.89949 −0.275759
\(627\) 0 0
\(628\) − 89.9117i − 3.58787i
\(629\) 22.9706 0.915896
\(630\) 0 0
\(631\) 34.0000 1.35352 0.676759 0.736204i \(-0.263384\pi\)
0.676759 + 0.736204i \(0.263384\pi\)
\(632\) 26.4853i 1.05353i
\(633\) 0 0
\(634\) −48.6274 −1.93124
\(635\) 0 0
\(636\) 0 0
\(637\) − 1.17157i − 0.0464194i
\(638\) − 2.65685i − 0.105186i
\(639\) 0 0
\(640\) 0 0
\(641\) −28.1127 −1.11038 −0.555192 0.831722i \(-0.687355\pi\)
−0.555192 + 0.831722i \(0.687355\pi\)
\(642\) 0 0
\(643\) 1.02944i 0.0405970i 0.999794 + 0.0202985i \(0.00646166\pi\)
−0.999794 + 0.0202985i \(0.993538\pi\)
\(644\) −29.3137 −1.15512
\(645\) 0 0
\(646\) 33.7990 1.32980
\(647\) − 18.8284i − 0.740222i −0.928988 0.370111i \(-0.879320\pi\)
0.928988 0.370111i \(-0.120680\pi\)
\(648\) 0 0
\(649\) −84.9411 −3.33423
\(650\) 0 0
\(651\) 0 0
\(652\) 38.2843i 1.49933i
\(653\) − 22.4558i − 0.878765i −0.898300 0.439383i \(-0.855197\pi\)
0.898300 0.439383i \(-0.144803\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 16.9706 0.662589
\(657\) 0 0
\(658\) − 20.8995i − 0.814747i
\(659\) −8.62742 −0.336076 −0.168038 0.985780i \(-0.553743\pi\)
−0.168038 + 0.985780i \(0.553743\pi\)
\(660\) 0 0
\(661\) −6.82843 −0.265595 −0.132798 0.991143i \(-0.542396\pi\)
−0.132798 + 0.991143i \(0.542396\pi\)
\(662\) − 66.7696i − 2.59507i
\(663\) 0 0
\(664\) −30.4558 −1.18192
\(665\) 0 0
\(666\) 0 0
\(667\) 0.544156i 0.0210698i
\(668\) − 20.3431i − 0.787100i
\(669\) 0 0
\(670\) 0 0
\(671\) −6.41421 −0.247618
\(672\) 0 0
\(673\) − 24.4558i − 0.942704i −0.881945 0.471352i \(-0.843766\pi\)
0.881945 0.471352i \(-0.156234\pi\)
\(674\) −50.2132 −1.93414
\(675\) 0 0
\(676\) 3.82843 0.147247
\(677\) 41.3137i 1.58781i 0.608039 + 0.793907i \(0.291957\pi\)
−0.608039 + 0.793907i \(0.708043\pi\)
\(678\) 0 0
\(679\) 2.00000 0.0767530
\(680\) 0 0
\(681\) 0 0
\(682\) 19.2426i 0.736839i
\(683\) 21.5858i 0.825957i 0.910741 + 0.412979i \(0.135512\pi\)
−0.910741 + 0.412979i \(0.864488\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 47.6274 1.81842
\(687\) 0 0
\(688\) − 2.48528i − 0.0947505i
\(689\) 3.00000 0.114291
\(690\) 0 0
\(691\) 8.89949 0.338553 0.169276 0.985569i \(-0.445857\pi\)
0.169276 + 0.985569i \(0.445857\pi\)
\(692\) − 71.4264i − 2.71522i
\(693\) 0 0
\(694\) 46.9706 1.78298
\(695\) 0 0
\(696\) 0 0
\(697\) 21.6569i 0.820312i
\(698\) 85.5980i 3.23993i
\(699\) 0 0
\(700\) 0 0
\(701\) 15.8284 0.597831 0.298916 0.954280i \(-0.403375\pi\)
0.298916 + 0.954280i \(0.403375\pi\)
\(702\) 0 0
\(703\) − 21.9411i − 0.827525i
\(704\) −63.0416 −2.37597
\(705\) 0 0
\(706\) 63.1127 2.37528
\(707\) 16.0711i 0.604415i
\(708\) 0 0
\(709\) 49.2548 1.84980 0.924902 0.380205i \(-0.124147\pi\)
0.924902 + 0.380205i \(0.124147\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 37.4558i − 1.40372i
\(713\) − 3.94113i − 0.147596i
\(714\) 0 0
\(715\) 0 0
\(716\) −2.62742 −0.0981912
\(717\) 0 0
\(718\) − 51.6274i − 1.92672i
\(719\) −49.4558 −1.84439 −0.922196 0.386723i \(-0.873607\pi\)
−0.922196 + 0.386723i \(0.873607\pi\)
\(720\) 0 0
\(721\) 32.9706 1.22789
\(722\) 13.5858i 0.505611i
\(723\) 0 0
\(724\) 66.9411 2.48785
\(725\) 0 0
\(726\) 0 0
\(727\) 16.6863i 0.618860i 0.950922 + 0.309430i \(0.100138\pi\)
−0.950922 + 0.309430i \(0.899862\pi\)
\(728\) 10.6569i 0.394969i
\(729\) 0 0
\(730\) 0 0
\(731\) 3.17157 0.117305
\(732\) 0 0
\(733\) 35.7990i 1.32227i 0.750269 + 0.661133i \(0.229924\pi\)
−0.750269 + 0.661133i \(0.770076\pi\)
\(734\) −84.0833 −3.10357
\(735\) 0 0
\(736\) 5.02944 0.185388
\(737\) 17.6863i 0.651483i
\(738\) 0 0
\(739\) 27.7279 1.01999 0.509994 0.860178i \(-0.329648\pi\)
0.509994 + 0.860178i \(0.329648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 17.4853i 0.641905i
\(743\) − 14.6985i − 0.539235i −0.962967 0.269618i \(-0.913103\pi\)
0.962967 0.269618i \(-0.0868973\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.75736 −0.100954
\(747\) 0 0
\(748\) 94.0122i 3.43743i
\(749\) 38.9706 1.42395
\(750\) 0 0
\(751\) 31.4558 1.14784 0.573920 0.818911i \(-0.305422\pi\)
0.573920 + 0.818911i \(0.305422\pi\)
\(752\) − 10.7574i − 0.392281i
\(753\) 0 0
\(754\) 0.414214 0.0150848
\(755\) 0 0
\(756\) 0 0
\(757\) − 16.3137i − 0.592932i −0.955043 0.296466i \(-0.904192\pi\)
0.955043 0.296466i \(-0.0958081\pi\)
\(758\) − 76.9411i − 2.79463i
\(759\) 0 0
\(760\) 0 0
\(761\) 21.7990 0.790213 0.395106 0.918635i \(-0.370708\pi\)
0.395106 + 0.918635i \(0.370708\pi\)
\(762\) 0 0
\(763\) 39.7990i 1.44082i
\(764\) 96.9117 3.50614
\(765\) 0 0
\(766\) 66.7696 2.41248
\(767\) − 13.2426i − 0.478164i
\(768\) 0 0
\(769\) −4.97056 −0.179243 −0.0896215 0.995976i \(-0.528566\pi\)
−0.0896215 + 0.995976i \(0.528566\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.34315i 0.228295i
\(773\) − 5.79899i − 0.208575i −0.994547 0.104288i \(-0.966744\pi\)
0.994547 0.104288i \(-0.0332562\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3.65685 0.131273
\(777\) 0 0
\(778\) − 69.1127i − 2.47781i
\(779\) 20.6863 0.741163
\(780\) 0 0
\(781\) −59.7401 −2.13767
\(782\) − 29.3137i − 1.04826i
\(783\) 0 0
\(784\) 3.51472 0.125526
\(785\) 0 0
\(786\) 0 0
\(787\) 38.7574i 1.38155i 0.723069 + 0.690775i \(0.242731\pi\)
−0.723069 + 0.690775i \(0.757269\pi\)
\(788\) − 45.9411i − 1.63658i
\(789\) 0 0
\(790\) 0 0
\(791\) 28.1421 1.00062
\(792\) 0 0
\(793\) − 1.00000i − 0.0355110i
\(794\) 18.4853 0.656018
\(795\) 0 0
\(796\) 38.2843 1.35695
\(797\) 11.4853i 0.406830i 0.979093 + 0.203415i \(0.0652040\pi\)
−0.979093 + 0.203415i \(0.934796\pi\)
\(798\) 0 0
\(799\) 13.7279 0.485659
\(800\) 0 0
\(801\) 0 0
\(802\) − 9.31371i − 0.328878i
\(803\) − 38.4853i − 1.35812i
\(804\) 0 0
\(805\) 0 0
\(806\) −3.00000 −0.105670
\(807\) 0 0
\(808\) 29.3848i 1.03375i
\(809\) 17.3137 0.608718 0.304359 0.952557i \(-0.401558\pi\)
0.304359 + 0.952557i \(0.401558\pi\)
\(810\) 0 0
\(811\) 9.58579 0.336602 0.168301 0.985736i \(-0.446172\pi\)
0.168301 + 0.985736i \(0.446172\pi\)
\(812\) 1.58579i 0.0556502i
\(813\) 0 0
\(814\) 92.9117 3.25655
\(815\) 0 0
\(816\) 0 0
\(817\) − 3.02944i − 0.105987i
\(818\) − 26.1421i − 0.914038i
\(819\) 0 0
\(820\) 0 0
\(821\) 20.8284 0.726917 0.363459 0.931610i \(-0.381596\pi\)
0.363459 + 0.931610i \(0.381596\pi\)
\(822\) 0 0
\(823\) 20.2843i 0.707065i 0.935422 + 0.353533i \(0.115020\pi\)
−0.935422 + 0.353533i \(0.884980\pi\)
\(824\) 60.2843 2.10010
\(825\) 0 0
\(826\) 77.1838 2.68557
\(827\) 32.3553i 1.12511i 0.826761 + 0.562553i \(0.190181\pi\)
−0.826761 + 0.562553i \(0.809819\pi\)
\(828\) 0 0
\(829\) −7.97056 −0.276829 −0.138415 0.990374i \(-0.544201\pi\)
−0.138415 + 0.990374i \(0.544201\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 9.82843i − 0.340739i
\(833\) 4.48528i 0.155406i
\(834\) 0 0
\(835\) 0 0
\(836\) 89.7990 3.10576
\(837\) 0 0
\(838\) − 55.1127i − 1.90384i
\(839\) −1.02944 −0.0355401 −0.0177701 0.999842i \(-0.505657\pi\)
−0.0177701 + 0.999842i \(0.505657\pi\)
\(840\) 0 0
\(841\) −28.9706 −0.998985
\(842\) 40.9706i 1.41194i
\(843\) 0 0
\(844\) −68.1421 −2.34555
\(845\) 0 0
\(846\) 0 0
\(847\) 72.7696i 2.50039i
\(848\) 9.00000i 0.309061i
\(849\) 0 0
\(850\) 0 0
\(851\) −19.0294 −0.652321
\(852\) 0 0
\(853\) 42.4264i 1.45265i 0.687350 + 0.726326i \(0.258774\pi\)
−0.687350 + 0.726326i \(0.741226\pi\)
\(854\) 5.82843 0.199445
\(855\) 0 0
\(856\) 71.2548 2.43544
\(857\) 4.62742i 0.158070i 0.996872 + 0.0790348i \(0.0251838\pi\)
−0.996872 + 0.0790348i \(0.974816\pi\)
\(858\) 0 0
\(859\) −24.1421 −0.823719 −0.411860 0.911247i \(-0.635121\pi\)
−0.411860 + 0.911247i \(0.635121\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 20.1421i − 0.686044i
\(863\) 29.1838i 0.993427i 0.867915 + 0.496713i \(0.165460\pi\)
−0.867915 + 0.496713i \(0.834540\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −39.4558 −1.34076
\(867\) 0 0
\(868\) − 11.4853i − 0.389836i
\(869\) −38.4853 −1.30552
\(870\) 0 0
\(871\) −2.75736 −0.0934296
\(872\) 72.7696i 2.46429i
\(873\) 0 0
\(874\) −28.0000 −0.947114
\(875\) 0 0
\(876\) 0 0
\(877\) − 15.7990i − 0.533494i −0.963767 0.266747i \(-0.914051\pi\)
0.963767 0.266747i \(-0.0859488\pi\)
\(878\) 33.7990i 1.14066i
\(879\) 0 0
\(880\) 0 0
\(881\) 15.0000 0.505363 0.252681 0.967550i \(-0.418688\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(882\) 0 0
\(883\) − 32.9706i − 1.10955i −0.832001 0.554774i \(-0.812805\pi\)
0.832001 0.554774i \(-0.187195\pi\)
\(884\) −14.6569 −0.492963
\(885\) 0 0
\(886\) −71.9411 −2.41691
\(887\) − 8.62742i − 0.289680i −0.989455 0.144840i \(-0.953733\pi\)
0.989455 0.144840i \(-0.0462668\pi\)
\(888\) 0 0
\(889\) 8.82843 0.296096
\(890\) 0 0
\(891\) 0 0
\(892\) − 42.0000i − 1.40626i
\(893\) − 13.1127i − 0.438800i
\(894\) 0 0
\(895\) 0 0
\(896\) 49.6274 1.65794
\(897\) 0 0
\(898\) 12.4853i 0.416639i
\(899\) −0.213203 −0.00711073
\(900\) 0 0
\(901\) −11.4853 −0.382630
\(902\) 87.5980i 2.91669i
\(903\) 0 0
\(904\) 51.4558 1.71140
\(905\) 0 0
\(906\) 0 0
\(907\) − 24.0000i − 0.796907i −0.917189 0.398453i \(-0.869547\pi\)
0.917189 0.398453i \(-0.130453\pi\)
\(908\) − 34.0711i − 1.13069i
\(909\) 0 0
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) − 44.2548i − 1.46462i
\(914\) 20.4853 0.677593
\(915\) 0 0
\(916\) −18.4853 −0.610771
\(917\) − 20.4853i − 0.676484i
\(918\) 0 0
\(919\) 18.9706 0.625781 0.312891 0.949789i \(-0.398703\pi\)
0.312891 + 0.949789i \(0.398703\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 46.9706i − 1.54689i
\(923\) − 9.31371i − 0.306564i
\(924\) 0 0
\(925\) 0 0
\(926\) −68.9411 −2.26555
\(927\) 0 0
\(928\) − 0.272078i − 0.00893140i
\(929\) 30.2843 0.993595 0.496797 0.867867i \(-0.334509\pi\)
0.496797 + 0.867867i \(0.334509\pi\)
\(930\) 0 0
\(931\) 4.28427 0.140411
\(932\) − 78.9706i − 2.58677i
\(933\) 0 0
\(934\) −75.1127 −2.45776
\(935\) 0 0
\(936\) 0 0
\(937\) 1.97056i 0.0643755i 0.999482 + 0.0321877i \(0.0102474\pi\)
−0.999482 + 0.0321877i \(0.989753\pi\)
\(938\) − 16.0711i − 0.524739i
\(939\) 0 0
\(940\) 0 0
\(941\) 35.6569 1.16238 0.581190 0.813768i \(-0.302587\pi\)
0.581190 + 0.813768i \(0.302587\pi\)
\(942\) 0 0
\(943\) − 17.9411i − 0.584243i
\(944\) 39.7279 1.29303
\(945\) 0 0
\(946\) 12.8284 0.417088
\(947\) 26.4142i 0.858347i 0.903222 + 0.429173i \(0.141195\pi\)
−0.903222 + 0.429173i \(0.858805\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) − 40.7990i − 1.32230i
\(953\) − 47.3431i − 1.53359i −0.641889 0.766797i \(-0.721849\pi\)
0.641889 0.766797i \(-0.278151\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −90.2965 −2.92040
\(957\) 0 0
\(958\) − 34.4558i − 1.11322i
\(959\) 6.82843 0.220501
\(960\) 0 0
\(961\) −29.4558 −0.950189
\(962\) 14.4853i 0.467024i
\(963\) 0 0
\(964\) −19.0294 −0.612897
\(965\) 0 0
\(966\) 0 0
\(967\) 43.7279i 1.40620i 0.711093 + 0.703098i \(0.248200\pi\)
−0.711093 + 0.703098i \(0.751800\pi\)
\(968\) 133.054i 4.27651i
\(969\) 0 0
\(970\) 0 0
\(971\) −36.8284 −1.18188 −0.590940 0.806715i \(-0.701243\pi\)
−0.590940 + 0.806715i \(0.701243\pi\)
\(972\) 0 0
\(973\) 44.6274i 1.43069i
\(974\) −101.912 −3.26546
\(975\) 0 0
\(976\) 3.00000 0.0960277
\(977\) 8.48528i 0.271468i 0.990745 + 0.135734i \(0.0433393\pi\)
−0.990745 + 0.135734i \(0.956661\pi\)
\(978\) 0 0
\(979\) 54.4264 1.73948
\(980\) 0 0
\(981\) 0 0
\(982\) 26.9706i 0.860665i
\(983\) 26.6985i 0.851549i 0.904829 + 0.425775i \(0.139998\pi\)
−0.904829 + 0.425775i \(0.860002\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.58579 −0.0505017
\(987\) 0 0
\(988\) 14.0000i 0.445399i
\(989\) −2.62742 −0.0835470
\(990\) 0 0
\(991\) −13.5147 −0.429309 −0.214655 0.976690i \(-0.568863\pi\)
−0.214655 + 0.976690i \(0.568863\pi\)
\(992\) 1.97056i 0.0625654i
\(993\) 0 0
\(994\) 54.2843 1.72179
\(995\) 0 0
\(996\) 0 0
\(997\) 12.6569i 0.400847i 0.979709 + 0.200423i \(0.0642317\pi\)
−0.979709 + 0.200423i \(0.935768\pi\)
\(998\) 6.17157i 0.195358i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2925.2.c.q.2224.1 4
3.2 odd 2 325.2.b.d.274.4 4
5.2 odd 4 2925.2.a.bd.1.2 2
5.3 odd 4 2925.2.a.w.1.1 2
5.4 even 2 inner 2925.2.c.q.2224.4 4
15.2 even 4 325.2.a.f.1.1 2
15.8 even 4 325.2.a.h.1.2 yes 2
15.14 odd 2 325.2.b.d.274.1 4
60.23 odd 4 5200.2.a.br.1.2 2
60.47 odd 4 5200.2.a.bt.1.1 2
195.38 even 4 4225.2.a.s.1.1 2
195.77 even 4 4225.2.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.a.f.1.1 2 15.2 even 4
325.2.a.h.1.2 yes 2 15.8 even 4
325.2.b.d.274.1 4 15.14 odd 2
325.2.b.d.274.4 4 3.2 odd 2
2925.2.a.w.1.1 2 5.3 odd 4
2925.2.a.bd.1.2 2 5.2 odd 4
2925.2.c.q.2224.1 4 1.1 even 1 trivial
2925.2.c.q.2224.4 4 5.4 even 2 inner
4225.2.a.s.1.1 2 195.38 even 4
4225.2.a.z.1.2 2 195.77 even 4
5200.2.a.br.1.2 2 60.23 odd 4
5200.2.a.bt.1.1 2 60.47 odd 4