Properties

Label 2-2912-1.1-c1-0-54
Degree $2$
Conductor $2912$
Sign $-1$
Analytic cond. $23.2524$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.67·3-s − 3.48·5-s − 7-s − 0.193·9-s + 2.48·11-s + 13-s − 5.83·15-s + 5.02·17-s + 2.13·19-s − 1.67·21-s − 6.92·23-s + 7.11·25-s − 5.35·27-s + 0.612·29-s + 2.28·31-s + 4.15·33-s + 3.48·35-s − 8.09·37-s + 1.67·39-s − 6.31·41-s − 8.11·43-s + 0.675·45-s − 7.21·47-s + 49-s + 8.41·51-s + 12.6·53-s − 8.63·55-s + ⋯
L(s)  = 1  + 0.967·3-s − 1.55·5-s − 0.377·7-s − 0.0646·9-s + 0.748·11-s + 0.277·13-s − 1.50·15-s + 1.21·17-s + 0.488·19-s − 0.365·21-s − 1.44·23-s + 1.42·25-s − 1.02·27-s + 0.113·29-s + 0.410·31-s + 0.723·33-s + 0.588·35-s − 1.33·37-s + 0.268·39-s − 0.985·41-s − 1.23·43-s + 0.100·45-s − 1.05·47-s + 0.142·49-s + 1.17·51-s + 1.74·53-s − 1.16·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(23.2524\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2912,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 - 1.67T + 3T^{2} \)
5 \( 1 + 3.48T + 5T^{2} \)
11 \( 1 - 2.48T + 11T^{2} \)
17 \( 1 - 5.02T + 17T^{2} \)
19 \( 1 - 2.13T + 19T^{2} \)
23 \( 1 + 6.92T + 23T^{2} \)
29 \( 1 - 0.612T + 29T^{2} \)
31 \( 1 - 2.28T + 31T^{2} \)
37 \( 1 + 8.09T + 37T^{2} \)
41 \( 1 + 6.31T + 41T^{2} \)
43 \( 1 + 8.11T + 43T^{2} \)
47 \( 1 + 7.21T + 47T^{2} \)
53 \( 1 - 12.6T + 53T^{2} \)
59 \( 1 + 0.932T + 59T^{2} \)
61 \( 1 + 11.0T + 61T^{2} \)
67 \( 1 + 6.18T + 67T^{2} \)
71 \( 1 + 1.20T + 71T^{2} \)
73 \( 1 + 13.6T + 73T^{2} \)
79 \( 1 - 13.7T + 79T^{2} \)
83 \( 1 - 9.24T + 83T^{2} \)
89 \( 1 + 13.1T + 89T^{2} \)
97 \( 1 + 8.36T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.325477499025564382141663059820, −7.81667203913267345872150835996, −7.12865742016169870189413716170, −6.22950893870125877883512622429, −5.18974188754184674804491676630, −4.03158699384157137891715359924, −3.55943697210016536048377257086, −2.97578845893840946747609977342, −1.53377698942104893790111030014, 0, 1.53377698942104893790111030014, 2.97578845893840946747609977342, 3.55943697210016536048377257086, 4.03158699384157137891715359924, 5.18974188754184674804491676630, 6.22950893870125877883512622429, 7.12865742016169870189413716170, 7.81667203913267345872150835996, 8.325477499025564382141663059820

Graph of the $Z$-function along the critical line