Properties

Label 2912.2.a.h
Level $2912$
Weight $2$
Character orbit 2912.a
Self dual yes
Analytic conductor $23.252$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-5,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2524370686\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + (\beta_1 - 2) q^{5} - q^{7} + ( - \beta_{2} - \beta_1) q^{9} + ( - \beta_1 + 1) q^{11} + q^{13} + ( - 2 \beta_{2} + \beta_1 - 1) q^{15} + 3 \beta_{2} q^{17} + ( - 2 \beta_{2} - \beta_1 + 4) q^{19}+ \cdots + (\beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{5} - 3 q^{7} - q^{9} + 2 q^{11} + 3 q^{13} - 2 q^{15} + 11 q^{19} + q^{23} - 6 q^{27} + q^{29} + q^{31} + 2 q^{33} + 5 q^{35} - 18 q^{37} + 2 q^{41} - 3 q^{43} - 3 q^{45} - 7 q^{47} + 3 q^{49}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
2.17009
−1.48119
0 −2.21432 0 −1.68889 0 −1.00000 0 1.90321 0
1.2 0 0.539189 0 0.170086 0 −1.00000 0 −2.70928 0
1.3 0 1.67513 0 −3.48119 0 −1.00000 0 −0.193937 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2912.2.a.h 3
4.b odd 2 1 2912.2.a.i yes 3
8.b even 2 1 5824.2.a.bw 3
8.d odd 2 1 5824.2.a.bx 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2912.2.a.h 3 1.a even 1 1 trivial
2912.2.a.i yes 3 4.b odd 2 1
5824.2.a.bw 3 8.b even 2 1
5824.2.a.bx 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2912))\):

\( T_{3}^{3} - 4T_{3} + 2 \) Copy content Toggle raw display
\( T_{5}^{3} + 5T_{5}^{2} + 5T_{5} - 1 \) Copy content Toggle raw display
\( T_{11}^{3} - 2T_{11}^{2} - 2T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 4T + 2 \) Copy content Toggle raw display
$5$ \( T^{3} + 5 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( (T - 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 36T + 54 \) Copy content Toggle raw display
$19$ \( T^{3} - 11 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$23$ \( T^{3} - T^{2} + \cdots + 13 \) Copy content Toggle raw display
$29$ \( T^{3} - T^{2} + \cdots + 13 \) Copy content Toggle raw display
$31$ \( T^{3} - T^{2} + \cdots + 23 \) Copy content Toggle raw display
$37$ \( T^{3} + 18 T^{2} + \cdots - 50 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$43$ \( T^{3} + 3 T^{2} + \cdots + 37 \) Copy content Toggle raw display
$47$ \( T^{3} + 7 T^{2} + \cdots - 299 \) Copy content Toggle raw display
$53$ \( T^{3} - 5 T^{2} + \cdots + 601 \) Copy content Toggle raw display
$59$ \( T^{3} - 6 T^{2} + \cdots - 76 \) Copy content Toggle raw display
$61$ \( T^{3} + 14 T^{2} + \cdots - 1112 \) Copy content Toggle raw display
$67$ \( T^{3} + 6 T^{2} + \cdots - 760 \) Copy content Toggle raw display
$71$ \( T^{3} + 30 T^{2} + \cdots + 250 \) Copy content Toggle raw display
$73$ \( T^{3} + 25 T^{2} + \cdots + 437 \) Copy content Toggle raw display
$79$ \( T^{3} + 11 T^{2} + \cdots - 2047 \) Copy content Toggle raw display
$83$ \( T^{3} - 11 T^{2} + \cdots + 233 \) Copy content Toggle raw display
$89$ \( T^{3} + 5 T^{2} + \cdots - 2447 \) Copy content Toggle raw display
$97$ \( T^{3} + 41 T^{2} + \cdots + 2225 \) Copy content Toggle raw display
show more
show less