Properties

Label 2-2900-1.1-c1-0-15
Degree $2$
Conductor $2900$
Sign $1$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.434·3-s + 3.15·7-s − 2.81·9-s + 5.02·11-s + 4.08·13-s − 7.55·17-s + 2.65·19-s − 1.37·21-s + 7.18·23-s + 2.52·27-s − 29-s + 4.72·31-s − 2.18·33-s − 5.98·37-s − 1.77·39-s − 9.58·41-s + 5.74·43-s + 0.565·47-s + 2.96·49-s + 3.28·51-s + 10.2·53-s − 1.15·57-s − 1.33·59-s + 2.15·61-s − 8.87·63-s + 9.69·67-s − 3.12·69-s + ⋯
L(s)  = 1  − 0.251·3-s + 1.19·7-s − 0.936·9-s + 1.51·11-s + 1.13·13-s − 1.83·17-s + 0.610·19-s − 0.299·21-s + 1.49·23-s + 0.486·27-s − 0.185·29-s + 0.848·31-s − 0.380·33-s − 0.984·37-s − 0.284·39-s − 1.49·41-s + 0.876·43-s + 0.0824·47-s + 0.423·49-s + 0.460·51-s + 1.41·53-s − 0.153·57-s − 0.174·59-s + 0.275·61-s − 1.11·63-s + 1.18·67-s − 0.376·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.091399666\)
\(L(\frac12)\) \(\approx\) \(2.091399666\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 + T \)
good3 \( 1 + 0.434T + 3T^{2} \)
7 \( 1 - 3.15T + 7T^{2} \)
11 \( 1 - 5.02T + 11T^{2} \)
13 \( 1 - 4.08T + 13T^{2} \)
17 \( 1 + 7.55T + 17T^{2} \)
19 \( 1 - 2.65T + 19T^{2} \)
23 \( 1 - 7.18T + 23T^{2} \)
31 \( 1 - 4.72T + 31T^{2} \)
37 \( 1 + 5.98T + 37T^{2} \)
41 \( 1 + 9.58T + 41T^{2} \)
43 \( 1 - 5.74T + 43T^{2} \)
47 \( 1 - 0.565T + 47T^{2} \)
53 \( 1 - 10.2T + 53T^{2} \)
59 \( 1 + 1.33T + 59T^{2} \)
61 \( 1 - 2.15T + 61T^{2} \)
67 \( 1 - 9.69T + 67T^{2} \)
71 \( 1 + 13.3T + 71T^{2} \)
73 \( 1 - 2.78T + 73T^{2} \)
79 \( 1 + 15.2T + 79T^{2} \)
83 \( 1 + 0.504T + 83T^{2} \)
89 \( 1 - 8.79T + 89T^{2} \)
97 \( 1 - 17.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.817925011099870147400312866264, −8.279435263630472146034255089934, −7.06240905640744003753165485760, −6.56135148311863692770860971957, −5.68827560673029538840527164347, −4.86999282045119503296223936083, −4.12914397172662364243904936132, −3.15724790650940818459654847820, −1.91607185870830579605802774698, −0.962337808388013687616438397297, 0.962337808388013687616438397297, 1.91607185870830579605802774698, 3.15724790650940818459654847820, 4.12914397172662364243904936132, 4.86999282045119503296223936083, 5.68827560673029538840527164347, 6.56135148311863692770860971957, 7.06240905640744003753165485760, 8.279435263630472146034255089934, 8.817925011099870147400312866264

Graph of the $Z$-function along the critical line