Properties

Label 2900.2.a.k
Level $2900$
Weight $2$
Character orbit 2900.a
Self dual yes
Analytic conductor $23.157$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2900,2,Mod(1,2900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2900.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,0,0,4,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1566165862\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.2370465.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 9x^{3} - x^{2} + 9x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + ( - \beta_{4} + 1) q^{7} + ( - \beta_{4} - \beta_{3} + \beta_{2} + 1) q^{9} + ( - \beta_{2} - \beta_1 + 1) q^{11} + ( - \beta_{4} - \beta_{3} + \beta_1 + 3) q^{13} + (\beta_{4} - \beta_{3} + \beta_{2} + \cdots + 1) q^{17}+ \cdots + (\beta_{4} - \beta_{3} - 8 \beta_1 - 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{7} + 3 q^{9} + 4 q^{11} + 12 q^{13} + 5 q^{17} - 4 q^{19} + 3 q^{21} + 9 q^{23} - 3 q^{27} - 5 q^{29} + 3 q^{31} + 21 q^{33} + 4 q^{37} - 18 q^{39} + 5 q^{41} + 4 q^{43} + 5 q^{47} - 3 q^{49}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 9x^{3} - x^{2} + 9x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{4} + 9\nu^{2} + 2\nu - 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} + \nu^{3} - 9\nu^{2} - 9\nu + 7 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -2\nu^{4} - \nu^{3} + 17\nu^{2} + 11\nu - 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} - \beta_{3} + \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 7\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -9\beta_{4} - 9\beta_{3} + 8\beta_{2} + 2\beta _1 + 29 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.89768
0.672645
0.434833
−1.31654
−2.68862
0 −2.89768 0 0 0 1.71851 0 5.39654 0
1.2 0 −0.672645 0 0 0 −3.37701 0 −2.54755 0
1.3 0 −0.434833 0 0 0 3.15620 0 −2.81092 0
1.4 0 1.31654 0 0 0 −0.257197 0 −1.26672 0
1.5 0 2.68862 0 0 0 2.75949 0 4.22866 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2900.2.a.k yes 5
5.b even 2 1 2900.2.a.i 5
5.c odd 4 2 2900.2.c.i 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2900.2.a.i 5 5.b even 2 1
2900.2.a.k yes 5 1.a even 1 1 trivial
2900.2.c.i 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2900))\):

\( T_{3}^{5} - 9T_{3}^{3} + T_{3}^{2} + 9T_{3} + 3 \) Copy content Toggle raw display
\( T_{7}^{5} - 4T_{7}^{4} - 8T_{7}^{3} + 47T_{7}^{2} - 38T_{7} - 13 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 9 T^{3} + \cdots + 3 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 4 T^{4} + \cdots - 13 \) Copy content Toggle raw display
$11$ \( T^{5} - 4 T^{4} + \cdots - 129 \) Copy content Toggle raw display
$13$ \( T^{5} - 12 T^{4} + \cdots + 555 \) Copy content Toggle raw display
$17$ \( T^{5} - 5 T^{4} + \cdots + 387 \) Copy content Toggle raw display
$19$ \( T^{5} + 4 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{5} - 9 T^{4} + \cdots + 2421 \) Copy content Toggle raw display
$29$ \( (T + 1)^{5} \) Copy content Toggle raw display
$31$ \( T^{5} - 3 T^{4} + \cdots - 1665 \) Copy content Toggle raw display
$37$ \( T^{5} - 4 T^{4} + \cdots + 659 \) Copy content Toggle raw display
$41$ \( T^{5} - 5 T^{4} + \cdots + 2715 \) Copy content Toggle raw display
$43$ \( T^{5} - 4 T^{4} + \cdots - 415 \) Copy content Toggle raw display
$47$ \( T^{5} - 5 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$53$ \( T^{5} - 16 T^{4} + \cdots + 135 \) Copy content Toggle raw display
$59$ \( T^{5} + 23 T^{4} + \cdots - 3405 \) Copy content Toggle raw display
$61$ \( T^{5} - 5 T^{4} + \cdots - 9575 \) Copy content Toggle raw display
$67$ \( T^{5} - 5 T^{4} + \cdots - 14479 \) Copy content Toggle raw display
$71$ \( T^{5} - 23 T^{4} + \cdots + 48951 \) Copy content Toggle raw display
$73$ \( T^{5} - 18 T^{4} + \cdots + 1395 \) Copy content Toggle raw display
$79$ \( T^{5} - 4 T^{4} + \cdots - 32525 \) Copy content Toggle raw display
$83$ \( T^{5} - 9 T^{4} + \cdots + 6561 \) Copy content Toggle raw display
$89$ \( T^{5} + 6 T^{4} + \cdots + 30717 \) Copy content Toggle raw display
$97$ \( T^{5} - 21 T^{4} + \cdots + 1395 \) Copy content Toggle raw display
show more
show less