Properties

Label 2-17e2-1.1-c3-0-23
Degree $2$
Conductor $289$
Sign $-1$
Analytic cond. $17.0515$
Root an. cond. $4.12935$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.58·2-s − 4.98·3-s − 5.49·4-s − 14.4·5-s + 7.88·6-s + 29.4·7-s + 21.3·8-s − 2.16·9-s + 22.8·10-s − 13.5·11-s + 27.4·12-s + 45.7·13-s − 46.5·14-s + 72.0·15-s + 10.2·16-s + 3.41·18-s + 113.·19-s + 79.4·20-s − 146.·21-s + 21.4·22-s − 144.·23-s − 106.·24-s + 83.7·25-s − 72.3·26-s + 145.·27-s − 161.·28-s + 1.26·29-s + ⋯
L(s)  = 1  − 0.559·2-s − 0.959·3-s − 0.687·4-s − 1.29·5-s + 0.536·6-s + 1.58·7-s + 0.943·8-s − 0.0800·9-s + 0.722·10-s − 0.370·11-s + 0.659·12-s + 0.976·13-s − 0.888·14-s + 1.23·15-s + 0.159·16-s + 0.0447·18-s + 1.36·19-s + 0.888·20-s − 1.52·21-s + 0.207·22-s − 1.31·23-s − 0.905·24-s + 0.669·25-s − 0.546·26-s + 1.03·27-s − 1.09·28-s + 0.00811·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $-1$
Analytic conductor: \(17.0515\)
Root analytic conductor: \(4.12935\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 289,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 + 1.58T + 8T^{2} \)
3 \( 1 + 4.98T + 27T^{2} \)
5 \( 1 + 14.4T + 125T^{2} \)
7 \( 1 - 29.4T + 343T^{2} \)
11 \( 1 + 13.5T + 1.33e3T^{2} \)
13 \( 1 - 45.7T + 2.19e3T^{2} \)
19 \( 1 - 113.T + 6.85e3T^{2} \)
23 \( 1 + 144.T + 1.21e4T^{2} \)
29 \( 1 - 1.26T + 2.43e4T^{2} \)
31 \( 1 - 30.0T + 2.97e4T^{2} \)
37 \( 1 + 398.T + 5.06e4T^{2} \)
41 \( 1 + 184.T + 6.89e4T^{2} \)
43 \( 1 - 135.T + 7.95e4T^{2} \)
47 \( 1 - 247.T + 1.03e5T^{2} \)
53 \( 1 + 635.T + 1.48e5T^{2} \)
59 \( 1 - 625.T + 2.05e5T^{2} \)
61 \( 1 - 166.T + 2.26e5T^{2} \)
67 \( 1 - 159.T + 3.00e5T^{2} \)
71 \( 1 + 19.4T + 3.57e5T^{2} \)
73 \( 1 + 336.T + 3.89e5T^{2} \)
79 \( 1 + 1.07e3T + 4.93e5T^{2} \)
83 \( 1 - 47.1T + 5.71e5T^{2} \)
89 \( 1 + 626.T + 7.04e5T^{2} \)
97 \( 1 + 692.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.08019424357732429019464087430, −10.17879190970602887476858044314, −8.631497477324700614442224030894, −8.151123025019016515318299641886, −7.32970152747774403772024660141, −5.59554661164460924808695712358, −4.80759154398092360658069768454, −3.78045879569925759419261907650, −1.26153218601736440864435994908, 0, 1.26153218601736440864435994908, 3.78045879569925759419261907650, 4.80759154398092360658069768454, 5.59554661164460924808695712358, 7.32970152747774403772024660141, 8.151123025019016515318299641886, 8.631497477324700614442224030894, 10.17879190970602887476858044314, 11.08019424357732429019464087430

Graph of the $Z$-function along the critical line