Properties

Label 289.4.a.d.1.2
Level $289$
Weight $4$
Character 289.1
Self dual yes
Analytic conductor $17.052$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,4,Mod(1,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 289.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.0515519917\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.2555057.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 21x^{2} - 4x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.58184\) of defining polynomial
Character \(\chi\) \(=\) 289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.58184 q^{2} -4.98387 q^{3} -5.49778 q^{4} -14.4471 q^{5} +7.88368 q^{6} +29.4104 q^{7} +21.3513 q^{8} -2.16104 q^{9} +22.8530 q^{10} -13.5324 q^{11} +27.4002 q^{12} +45.7656 q^{13} -46.5225 q^{14} +72.0024 q^{15} +10.2079 q^{16} +3.41842 q^{18} +113.386 q^{19} +79.4269 q^{20} -146.578 q^{21} +21.4060 q^{22} -144.513 q^{23} -106.412 q^{24} +83.7182 q^{25} -72.3938 q^{26} +145.335 q^{27} -161.692 q^{28} +1.26688 q^{29} -113.896 q^{30} +30.0858 q^{31} -186.958 q^{32} +67.4435 q^{33} -424.894 q^{35} +11.8809 q^{36} -398.512 q^{37} -179.358 q^{38} -228.090 q^{39} -308.464 q^{40} -184.595 q^{41} +231.862 q^{42} +135.605 q^{43} +74.3979 q^{44} +31.2207 q^{45} +228.596 q^{46} +247.542 q^{47} -50.8748 q^{48} +521.971 q^{49} -132.429 q^{50} -251.609 q^{52} -635.182 q^{53} -229.896 q^{54} +195.503 q^{55} +627.951 q^{56} -565.100 q^{57} -2.00399 q^{58} +625.420 q^{59} -395.853 q^{60} +166.873 q^{61} -47.5909 q^{62} -63.5570 q^{63} +214.074 q^{64} -661.179 q^{65} -106.685 q^{66} +159.984 q^{67} +720.232 q^{69} +672.115 q^{70} -19.4559 q^{71} -46.1411 q^{72} -336.039 q^{73} +630.382 q^{74} -417.241 q^{75} -623.370 q^{76} -397.992 q^{77} +360.801 q^{78} -1072.15 q^{79} -147.474 q^{80} -665.982 q^{81} +291.999 q^{82} +47.1944 q^{83} +805.852 q^{84} -214.506 q^{86} -6.31394 q^{87} -288.934 q^{88} -626.312 q^{89} -49.3862 q^{90} +1345.98 q^{91} +794.499 q^{92} -149.944 q^{93} -391.572 q^{94} -1638.09 q^{95} +931.774 q^{96} -692.045 q^{97} -825.674 q^{98} +29.2439 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 2 q^{3} + 11 q^{4} - 14 q^{5} - 38 q^{6} - 36 q^{7} + 60 q^{8} + 6 q^{9} + 7 q^{10} - 10 q^{11} + 29 q^{12} - 22 q^{13} - 73 q^{14} + 54 q^{15} + 63 q^{16} - 334 q^{18} + 22 q^{19} - 330 q^{20}+ \cdots + 1406 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58184 −0.559265 −0.279632 0.960107i \(-0.590213\pi\)
−0.279632 + 0.960107i \(0.590213\pi\)
\(3\) −4.98387 −0.959146 −0.479573 0.877502i \(-0.659208\pi\)
−0.479573 + 0.877502i \(0.659208\pi\)
\(4\) −5.49778 −0.687223
\(5\) −14.4471 −1.29219 −0.646093 0.763259i \(-0.723598\pi\)
−0.646093 + 0.763259i \(0.723598\pi\)
\(6\) 7.88368 0.536417
\(7\) 29.4104 1.58801 0.794006 0.607910i \(-0.207992\pi\)
0.794006 + 0.607910i \(0.207992\pi\)
\(8\) 21.3513 0.943604
\(9\) −2.16104 −0.0800385
\(10\) 22.8530 0.722674
\(11\) −13.5324 −0.370923 −0.185462 0.982651i \(-0.559378\pi\)
−0.185462 + 0.982651i \(0.559378\pi\)
\(12\) 27.4002 0.659147
\(13\) 45.7656 0.976391 0.488196 0.872734i \(-0.337655\pi\)
0.488196 + 0.872734i \(0.337655\pi\)
\(14\) −46.5225 −0.888119
\(15\) 72.0024 1.23940
\(16\) 10.2079 0.159498
\(17\) 0 0
\(18\) 3.41842 0.0447627
\(19\) 113.386 1.36908 0.684539 0.728976i \(-0.260004\pi\)
0.684539 + 0.728976i \(0.260004\pi\)
\(20\) 79.4269 0.888020
\(21\) −146.578 −1.52314
\(22\) 21.4060 0.207444
\(23\) −144.513 −1.31013 −0.655065 0.755573i \(-0.727359\pi\)
−0.655065 + 0.755573i \(0.727359\pi\)
\(24\) −106.412 −0.905055
\(25\) 83.7182 0.669745
\(26\) −72.3938 −0.546061
\(27\) 145.335 1.03591
\(28\) −161.692 −1.09132
\(29\) 1.26688 0.00811217 0.00405608 0.999992i \(-0.498709\pi\)
0.00405608 + 0.999992i \(0.498709\pi\)
\(30\) −113.896 −0.693150
\(31\) 30.0858 0.174309 0.0871544 0.996195i \(-0.472223\pi\)
0.0871544 + 0.996195i \(0.472223\pi\)
\(32\) −186.958 −1.03281
\(33\) 67.4435 0.355770
\(34\) 0 0
\(35\) −424.894 −2.05201
\(36\) 11.8809 0.0550043
\(37\) −398.512 −1.77067 −0.885337 0.464950i \(-0.846072\pi\)
−0.885337 + 0.464950i \(0.846072\pi\)
\(38\) −179.358 −0.765677
\(39\) −228.090 −0.936502
\(40\) −308.464 −1.21931
\(41\) −184.595 −0.703143 −0.351571 0.936161i \(-0.614353\pi\)
−0.351571 + 0.936161i \(0.614353\pi\)
\(42\) 231.862 0.851836
\(43\) 135.605 0.480921 0.240460 0.970659i \(-0.422702\pi\)
0.240460 + 0.970659i \(0.422702\pi\)
\(44\) 74.3979 0.254907
\(45\) 31.2207 0.103425
\(46\) 228.596 0.732709
\(47\) 247.542 0.768249 0.384124 0.923281i \(-0.374503\pi\)
0.384124 + 0.923281i \(0.374503\pi\)
\(48\) −50.8748 −0.152982
\(49\) 521.971 1.52178
\(50\) −132.429 −0.374565
\(51\) 0 0
\(52\) −251.609 −0.670998
\(53\) −635.182 −1.64621 −0.823103 0.567892i \(-0.807759\pi\)
−0.823103 + 0.567892i \(0.807759\pi\)
\(54\) −229.896 −0.579351
\(55\) 195.503 0.479302
\(56\) 627.951 1.49845
\(57\) −565.100 −1.31315
\(58\) −2.00399 −0.00453685
\(59\) 625.420 1.38005 0.690023 0.723788i \(-0.257600\pi\)
0.690023 + 0.723788i \(0.257600\pi\)
\(60\) −395.853 −0.851741
\(61\) 166.873 0.350261 0.175130 0.984545i \(-0.443965\pi\)
0.175130 + 0.984545i \(0.443965\pi\)
\(62\) −47.5909 −0.0974847
\(63\) −63.5570 −0.127102
\(64\) 214.074 0.418114
\(65\) −661.179 −1.26168
\(66\) −106.685 −0.198970
\(67\) 159.984 0.291719 0.145859 0.989305i \(-0.453405\pi\)
0.145859 + 0.989305i \(0.453405\pi\)
\(68\) 0 0
\(69\) 720.232 1.25661
\(70\) 672.115 1.14762
\(71\) −19.4559 −0.0325211 −0.0162605 0.999868i \(-0.505176\pi\)
−0.0162605 + 0.999868i \(0.505176\pi\)
\(72\) −46.1411 −0.0755247
\(73\) −336.039 −0.538772 −0.269386 0.963032i \(-0.586821\pi\)
−0.269386 + 0.963032i \(0.586821\pi\)
\(74\) 630.382 0.990276
\(75\) −417.241 −0.642384
\(76\) −623.370 −0.940862
\(77\) −397.992 −0.589031
\(78\) 360.801 0.523753
\(79\) −1072.15 −1.52691 −0.763457 0.645859i \(-0.776500\pi\)
−0.763457 + 0.645859i \(0.776500\pi\)
\(80\) −147.474 −0.206101
\(81\) −665.982 −0.913555
\(82\) 291.999 0.393243
\(83\) 47.1944 0.0624128 0.0312064 0.999513i \(-0.490065\pi\)
0.0312064 + 0.999513i \(0.490065\pi\)
\(84\) 805.852 1.04673
\(85\) 0 0
\(86\) −214.506 −0.268962
\(87\) −6.31394 −0.00778075
\(88\) −288.934 −0.350005
\(89\) −626.312 −0.745944 −0.372972 0.927843i \(-0.621661\pi\)
−0.372972 + 0.927843i \(0.621661\pi\)
\(90\) −49.3862 −0.0578418
\(91\) 1345.98 1.55052
\(92\) 794.499 0.900351
\(93\) −149.944 −0.167188
\(94\) −391.572 −0.429655
\(95\) −1638.09 −1.76910
\(96\) 931.774 0.990612
\(97\) −692.045 −0.724398 −0.362199 0.932101i \(-0.617974\pi\)
−0.362199 + 0.932101i \(0.617974\pi\)
\(98\) −825.674 −0.851079
\(99\) 29.2439 0.0296882
\(100\) −460.264 −0.460264
\(101\) −551.668 −0.543496 −0.271748 0.962369i \(-0.587602\pi\)
−0.271748 + 0.962369i \(0.587602\pi\)
\(102\) 0 0
\(103\) −175.990 −0.168358 −0.0841789 0.996451i \(-0.526827\pi\)
−0.0841789 + 0.996451i \(0.526827\pi\)
\(104\) 977.156 0.921327
\(105\) 2117.62 1.96817
\(106\) 1004.76 0.920665
\(107\) −148.521 −0.134188 −0.0670938 0.997747i \(-0.521373\pi\)
−0.0670938 + 0.997747i \(0.521373\pi\)
\(108\) −799.019 −0.711904
\(109\) 703.114 0.617854 0.308927 0.951086i \(-0.400030\pi\)
0.308927 + 0.951086i \(0.400030\pi\)
\(110\) −309.254 −0.268057
\(111\) 1986.13 1.69834
\(112\) 300.218 0.253285
\(113\) 1987.05 1.65421 0.827104 0.562048i \(-0.189986\pi\)
0.827104 + 0.562048i \(0.189986\pi\)
\(114\) 893.898 0.734396
\(115\) 2087.79 1.69293
\(116\) −6.96500 −0.00557487
\(117\) −98.9012 −0.0781489
\(118\) −989.314 −0.771811
\(119\) 0 0
\(120\) 1537.35 1.16950
\(121\) −1147.88 −0.862416
\(122\) −263.966 −0.195888
\(123\) 919.996 0.674417
\(124\) −165.405 −0.119789
\(125\) 596.402 0.426750
\(126\) 100.537 0.0710837
\(127\) −1561.88 −1.09130 −0.545649 0.838014i \(-0.683717\pi\)
−0.545649 + 0.838014i \(0.683717\pi\)
\(128\) 1157.03 0.798970
\(129\) −675.838 −0.461273
\(130\) 1045.88 0.705613
\(131\) −1317.70 −0.878839 −0.439419 0.898282i \(-0.644816\pi\)
−0.439419 + 0.898282i \(0.644816\pi\)
\(132\) −370.790 −0.244493
\(133\) 3334.72 2.17411
\(134\) −253.069 −0.163148
\(135\) −2099.66 −1.33859
\(136\) 0 0
\(137\) 485.214 0.302588 0.151294 0.988489i \(-0.451656\pi\)
0.151294 + 0.988489i \(0.451656\pi\)
\(138\) −1139.29 −0.702775
\(139\) 1016.66 0.620376 0.310188 0.950675i \(-0.399608\pi\)
0.310188 + 0.950675i \(0.399608\pi\)
\(140\) 2335.98 1.41019
\(141\) −1233.72 −0.736863
\(142\) 30.7762 0.0181879
\(143\) −619.316 −0.362166
\(144\) −22.0596 −0.0127660
\(145\) −18.3026 −0.0104824
\(146\) 531.559 0.301316
\(147\) −2601.44 −1.45961
\(148\) 2190.93 1.21685
\(149\) −1322.91 −0.727364 −0.363682 0.931523i \(-0.618481\pi\)
−0.363682 + 0.931523i \(0.618481\pi\)
\(150\) 660.008 0.359263
\(151\) −1467.32 −0.790785 −0.395392 0.918512i \(-0.629391\pi\)
−0.395392 + 0.918512i \(0.629391\pi\)
\(152\) 2420.94 1.29187
\(153\) 0 0
\(154\) 629.559 0.329424
\(155\) −434.652 −0.225239
\(156\) 1253.99 0.643586
\(157\) −3403.23 −1.72998 −0.864991 0.501788i \(-0.832676\pi\)
−0.864991 + 0.501788i \(0.832676\pi\)
\(158\) 1695.97 0.853949
\(159\) 3165.66 1.57895
\(160\) 2701.00 1.33458
\(161\) −4250.17 −2.08050
\(162\) 1053.48 0.510919
\(163\) 378.056 0.181667 0.0908333 0.995866i \(-0.471047\pi\)
0.0908333 + 0.995866i \(0.471047\pi\)
\(164\) 1014.86 0.483216
\(165\) −974.362 −0.459721
\(166\) −74.6540 −0.0349053
\(167\) −572.418 −0.265240 −0.132620 0.991167i \(-0.542339\pi\)
−0.132620 + 0.991167i \(0.542339\pi\)
\(168\) −3129.63 −1.43724
\(169\) −102.512 −0.0466601
\(170\) 0 0
\(171\) −245.031 −0.109579
\(172\) −745.528 −0.330500
\(173\) −3321.64 −1.45977 −0.729884 0.683571i \(-0.760426\pi\)
−0.729884 + 0.683571i \(0.760426\pi\)
\(174\) 9.98764 0.00435150
\(175\) 2462.18 1.06356
\(176\) −138.137 −0.0591616
\(177\) −3117.01 −1.32367
\(178\) 990.726 0.417180
\(179\) −2093.76 −0.874273 −0.437137 0.899395i \(-0.644007\pi\)
−0.437137 + 0.899395i \(0.644007\pi\)
\(180\) −171.645 −0.0710758
\(181\) 682.032 0.280083 0.140042 0.990146i \(-0.455276\pi\)
0.140042 + 0.990146i \(0.455276\pi\)
\(182\) −2129.13 −0.867152
\(183\) −831.673 −0.335951
\(184\) −3085.54 −1.23624
\(185\) 5757.33 2.28804
\(186\) 237.187 0.0935021
\(187\) 0 0
\(188\) −1360.93 −0.527958
\(189\) 4274.35 1.64504
\(190\) 2591.20 0.989398
\(191\) 1921.15 0.727799 0.363900 0.931438i \(-0.381445\pi\)
0.363900 + 0.931438i \(0.381445\pi\)
\(192\) −1066.92 −0.401032
\(193\) −69.6893 −0.0259914 −0.0129957 0.999916i \(-0.504137\pi\)
−0.0129957 + 0.999916i \(0.504137\pi\)
\(194\) 1094.70 0.405130
\(195\) 3295.23 1.21014
\(196\) −2869.68 −1.04580
\(197\) −3043.10 −1.10057 −0.550285 0.834977i \(-0.685481\pi\)
−0.550285 + 0.834977i \(0.685481\pi\)
\(198\) −46.2592 −0.0166035
\(199\) −1255.72 −0.447315 −0.223657 0.974668i \(-0.571800\pi\)
−0.223657 + 0.974668i \(0.571800\pi\)
\(200\) 1787.49 0.631975
\(201\) −797.340 −0.279801
\(202\) 872.651 0.303958
\(203\) 37.2593 0.0128822
\(204\) 0 0
\(205\) 2666.85 0.908591
\(206\) 278.389 0.0941566
\(207\) 312.297 0.104861
\(208\) 467.170 0.155733
\(209\) −1534.38 −0.507823
\(210\) −3349.73 −1.10073
\(211\) −1060.15 −0.345894 −0.172947 0.984931i \(-0.555329\pi\)
−0.172947 + 0.984931i \(0.555329\pi\)
\(212\) 3492.09 1.13131
\(213\) 96.9658 0.0311924
\(214\) 234.937 0.0750464
\(215\) −1959.10 −0.621439
\(216\) 3103.09 0.977494
\(217\) 884.835 0.276804
\(218\) −1112.21 −0.345544
\(219\) 1674.77 0.516761
\(220\) −1074.83 −0.329387
\(221\) 0 0
\(222\) −3141.74 −0.949819
\(223\) −1398.85 −0.420064 −0.210032 0.977695i \(-0.567357\pi\)
−0.210032 + 0.977695i \(0.567357\pi\)
\(224\) −5498.50 −1.64011
\(225\) −180.918 −0.0536054
\(226\) −3143.19 −0.925141
\(227\) −2436.65 −0.712451 −0.356226 0.934400i \(-0.615937\pi\)
−0.356226 + 0.934400i \(0.615937\pi\)
\(228\) 3106.80 0.902424
\(229\) 5027.28 1.45071 0.725354 0.688376i \(-0.241676\pi\)
0.725354 + 0.688376i \(0.241676\pi\)
\(230\) −3302.54 −0.946797
\(231\) 1983.54 0.564967
\(232\) 27.0495 0.00765467
\(233\) 891.120 0.250555 0.125277 0.992122i \(-0.460018\pi\)
0.125277 + 0.992122i \(0.460018\pi\)
\(234\) 156.446 0.0437059
\(235\) −3576.26 −0.992721
\(236\) −3438.42 −0.948399
\(237\) 5343.45 1.46453
\(238\) 0 0
\(239\) −161.975 −0.0438382 −0.0219191 0.999760i \(-0.506978\pi\)
−0.0219191 + 0.999760i \(0.506978\pi\)
\(240\) 734.992 0.197681
\(241\) −3467.39 −0.926782 −0.463391 0.886154i \(-0.653367\pi\)
−0.463391 + 0.886154i \(0.653367\pi\)
\(242\) 1815.75 0.482319
\(243\) −604.873 −0.159682
\(244\) −917.432 −0.240707
\(245\) −7540.96 −1.96642
\(246\) −1455.29 −0.377177
\(247\) 5189.17 1.33676
\(248\) 642.372 0.164478
\(249\) −235.211 −0.0598630
\(250\) −943.412 −0.238666
\(251\) −4328.65 −1.08853 −0.544267 0.838912i \(-0.683192\pi\)
−0.544267 + 0.838912i \(0.683192\pi\)
\(252\) 349.423 0.0873474
\(253\) 1955.60 0.485958
\(254\) 2470.65 0.610324
\(255\) 0 0
\(256\) −3542.83 −0.864950
\(257\) −4567.47 −1.10860 −0.554301 0.832316i \(-0.687014\pi\)
−0.554301 + 0.832316i \(0.687014\pi\)
\(258\) 1069.07 0.257974
\(259\) −11720.4 −2.81185
\(260\) 3635.02 0.867055
\(261\) −2.73777 −0.000649285 0
\(262\) 2084.39 0.491504
\(263\) 4711.02 1.10454 0.552270 0.833665i \(-0.313762\pi\)
0.552270 + 0.833665i \(0.313762\pi\)
\(264\) 1440.01 0.335706
\(265\) 9176.52 2.12721
\(266\) −5274.99 −1.21590
\(267\) 3121.46 0.715469
\(268\) −879.558 −0.200476
\(269\) 3659.09 0.829362 0.414681 0.909967i \(-0.363893\pi\)
0.414681 + 0.909967i \(0.363893\pi\)
\(270\) 3321.33 0.748629
\(271\) −7702.43 −1.72653 −0.863264 0.504753i \(-0.831584\pi\)
−0.863264 + 0.504753i \(0.831584\pi\)
\(272\) 0 0
\(273\) −6708.21 −1.48718
\(274\) −767.530 −0.169227
\(275\) −1132.90 −0.248424
\(276\) −3959.68 −0.863568
\(277\) 3252.61 0.705526 0.352763 0.935713i \(-0.385242\pi\)
0.352763 + 0.935713i \(0.385242\pi\)
\(278\) −1608.20 −0.346954
\(279\) −65.0166 −0.0139514
\(280\) −9072.06 −1.93628
\(281\) −6839.31 −1.45195 −0.725977 0.687719i \(-0.758612\pi\)
−0.725977 + 0.687719i \(0.758612\pi\)
\(282\) 1951.54 0.412101
\(283\) −3131.30 −0.657726 −0.328863 0.944378i \(-0.606665\pi\)
−0.328863 + 0.944378i \(0.606665\pi\)
\(284\) 106.965 0.0223492
\(285\) 8164.05 1.69683
\(286\) 979.659 0.202547
\(287\) −5429.00 −1.11660
\(288\) 404.023 0.0826642
\(289\) 0 0
\(290\) 28.9519 0.00586245
\(291\) 3449.06 0.694803
\(292\) 1847.47 0.370256
\(293\) 5396.03 1.07590 0.537951 0.842976i \(-0.319198\pi\)
0.537951 + 0.842976i \(0.319198\pi\)
\(294\) 4115.05 0.816309
\(295\) −9035.49 −1.78328
\(296\) −8508.76 −1.67082
\(297\) −1966.72 −0.384245
\(298\) 2092.64 0.406789
\(299\) −6613.70 −1.27920
\(300\) 2293.90 0.441461
\(301\) 3988.20 0.763708
\(302\) 2321.06 0.442258
\(303\) 2749.44 0.521292
\(304\) 1157.43 0.218365
\(305\) −2410.83 −0.452602
\(306\) 0 0
\(307\) 2156.62 0.400927 0.200463 0.979701i \(-0.435755\pi\)
0.200463 + 0.979701i \(0.435755\pi\)
\(308\) 2188.07 0.404795
\(309\) 877.113 0.161480
\(310\) 687.550 0.125968
\(311\) −2729.42 −0.497656 −0.248828 0.968548i \(-0.580045\pi\)
−0.248828 + 0.968548i \(0.580045\pi\)
\(312\) −4870.02 −0.883687
\(313\) 5014.77 0.905595 0.452798 0.891613i \(-0.350426\pi\)
0.452798 + 0.891613i \(0.350426\pi\)
\(314\) 5383.36 0.967518
\(315\) 918.213 0.164240
\(316\) 5894.44 1.04933
\(317\) 1164.53 0.206329 0.103165 0.994664i \(-0.467103\pi\)
0.103165 + 0.994664i \(0.467103\pi\)
\(318\) −5007.57 −0.883052
\(319\) −17.1438 −0.00300899
\(320\) −3092.75 −0.540281
\(321\) 740.210 0.128706
\(322\) 6723.09 1.16355
\(323\) 0 0
\(324\) 3661.42 0.627816
\(325\) 3831.41 0.653934
\(326\) −598.024 −0.101600
\(327\) −3504.23 −0.592612
\(328\) −3941.34 −0.663488
\(329\) 7280.30 1.21999
\(330\) 1541.28 0.257106
\(331\) 2144.03 0.356032 0.178016 0.984028i \(-0.443032\pi\)
0.178016 + 0.984028i \(0.443032\pi\)
\(332\) −259.465 −0.0428915
\(333\) 861.200 0.141722
\(334\) 905.474 0.148339
\(335\) −2311.30 −0.376955
\(336\) −1496.25 −0.242937
\(337\) 1955.09 0.316025 0.158012 0.987437i \(-0.449491\pi\)
0.158012 + 0.987437i \(0.449491\pi\)
\(338\) 162.158 0.0260954
\(339\) −9903.18 −1.58663
\(340\) 0 0
\(341\) −407.132 −0.0646552
\(342\) 387.600 0.0612836
\(343\) 5263.61 0.828595
\(344\) 2895.35 0.453799
\(345\) −10405.3 −1.62377
\(346\) 5254.31 0.816397
\(347\) 10906.7 1.68732 0.843662 0.536875i \(-0.180395\pi\)
0.843662 + 0.536875i \(0.180395\pi\)
\(348\) 34.7127 0.00534711
\(349\) 9245.27 1.41802 0.709009 0.705200i \(-0.249143\pi\)
0.709009 + 0.705200i \(0.249143\pi\)
\(350\) −3894.78 −0.594814
\(351\) 6651.33 1.01146
\(352\) 2529.98 0.383092
\(353\) −4026.13 −0.607051 −0.303526 0.952823i \(-0.598164\pi\)
−0.303526 + 0.952823i \(0.598164\pi\)
\(354\) 4930.61 0.740280
\(355\) 281.081 0.0420233
\(356\) 3443.33 0.512630
\(357\) 0 0
\(358\) 3311.99 0.488950
\(359\) −10382.3 −1.52634 −0.763171 0.646197i \(-0.776359\pi\)
−0.763171 + 0.646197i \(0.776359\pi\)
\(360\) 666.604 0.0975919
\(361\) 5997.34 0.874375
\(362\) −1078.87 −0.156641
\(363\) 5720.86 0.827183
\(364\) −7399.92 −1.06555
\(365\) 4854.78 0.696194
\(366\) 1315.57 0.187886
\(367\) −12159.2 −1.72945 −0.864723 0.502249i \(-0.832506\pi\)
−0.864723 + 0.502249i \(0.832506\pi\)
\(368\) −1475.17 −0.208963
\(369\) 398.916 0.0562785
\(370\) −9107.18 −1.27962
\(371\) −18680.9 −2.61419
\(372\) 824.358 0.114895
\(373\) 11494.5 1.59561 0.797807 0.602913i \(-0.205993\pi\)
0.797807 + 0.602913i \(0.205993\pi\)
\(374\) 0 0
\(375\) −2972.39 −0.409316
\(376\) 5285.35 0.724923
\(377\) 57.9793 0.00792065
\(378\) −6761.34 −0.920016
\(379\) 1085.96 0.147182 0.0735908 0.997289i \(-0.476554\pi\)
0.0735908 + 0.997289i \(0.476554\pi\)
\(380\) 9005.88 1.21577
\(381\) 7784.23 1.04671
\(382\) −3038.95 −0.407032
\(383\) −8246.14 −1.10015 −0.550076 0.835115i \(-0.685401\pi\)
−0.550076 + 0.835115i \(0.685401\pi\)
\(384\) −5766.50 −0.766329
\(385\) 5749.82 0.761138
\(386\) 110.237 0.0145361
\(387\) −293.048 −0.0384922
\(388\) 3804.72 0.497823
\(389\) −3801.18 −0.495443 −0.247722 0.968831i \(-0.579682\pi\)
−0.247722 + 0.968831i \(0.579682\pi\)
\(390\) −5212.53 −0.676786
\(391\) 0 0
\(392\) 11144.8 1.43596
\(393\) 6567.24 0.842935
\(394\) 4813.70 0.615510
\(395\) 15489.4 1.97306
\(396\) −160.777 −0.0204024
\(397\) 8372.90 1.05850 0.529249 0.848466i \(-0.322474\pi\)
0.529249 + 0.848466i \(0.322474\pi\)
\(398\) 1986.35 0.250167
\(399\) −16619.8 −2.08529
\(400\) 854.586 0.106823
\(401\) 2173.63 0.270688 0.135344 0.990799i \(-0.456786\pi\)
0.135344 + 0.990799i \(0.456786\pi\)
\(402\) 1261.26 0.156483
\(403\) 1376.89 0.170194
\(404\) 3032.95 0.373503
\(405\) 9621.49 1.18048
\(406\) −58.9382 −0.00720457
\(407\) 5392.80 0.656785
\(408\) 0 0
\(409\) 4538.13 0.548646 0.274323 0.961638i \(-0.411546\pi\)
0.274323 + 0.961638i \(0.411546\pi\)
\(410\) −4218.54 −0.508143
\(411\) −2418.24 −0.290227
\(412\) 967.557 0.115699
\(413\) 18393.8 2.19153
\(414\) −494.005 −0.0586449
\(415\) −681.822 −0.0806490
\(416\) −8556.23 −1.00842
\(417\) −5066.91 −0.595031
\(418\) 2427.14 0.284008
\(419\) −4239.67 −0.494323 −0.247161 0.968974i \(-0.579498\pi\)
−0.247161 + 0.968974i \(0.579498\pi\)
\(420\) −11642.2 −1.35257
\(421\) 14001.6 1.62090 0.810448 0.585811i \(-0.199224\pi\)
0.810448 + 0.585811i \(0.199224\pi\)
\(422\) 1676.98 0.193446
\(423\) −534.948 −0.0614895
\(424\) −13562.0 −1.55337
\(425\) 0 0
\(426\) −153.384 −0.0174448
\(427\) 4907.80 0.556218
\(428\) 816.537 0.0922168
\(429\) 3086.59 0.347371
\(430\) 3098.98 0.347549
\(431\) −6401.94 −0.715477 −0.357738 0.933822i \(-0.616452\pi\)
−0.357738 + 0.933822i \(0.616452\pi\)
\(432\) 1483.56 0.165227
\(433\) 13.2865 0.00147462 0.000737310 1.00000i \(-0.499765\pi\)
0.000737310 1.00000i \(0.499765\pi\)
\(434\) −1399.67 −0.154807
\(435\) 91.2180 0.0100542
\(436\) −3865.57 −0.424603
\(437\) −16385.7 −1.79367
\(438\) −2649.22 −0.289006
\(439\) 14294.8 1.55410 0.777052 0.629437i \(-0.216714\pi\)
0.777052 + 0.629437i \(0.216714\pi\)
\(440\) 4174.25 0.452272
\(441\) −1128.00 −0.121801
\(442\) 0 0
\(443\) 16530.3 1.77286 0.886430 0.462862i \(-0.153177\pi\)
0.886430 + 0.462862i \(0.153177\pi\)
\(444\) −10919.3 −1.16713
\(445\) 9048.39 0.963898
\(446\) 2212.76 0.234927
\(447\) 6593.22 0.697648
\(448\) 6296.01 0.663970
\(449\) −16571.9 −1.74182 −0.870910 0.491443i \(-0.836470\pi\)
−0.870910 + 0.491443i \(0.836470\pi\)
\(450\) 286.184 0.0299796
\(451\) 2498.00 0.260812
\(452\) −10924.4 −1.13681
\(453\) 7312.91 0.758478
\(454\) 3854.40 0.398449
\(455\) −19445.5 −2.00356
\(456\) −12065.6 −1.23909
\(457\) −14718.1 −1.50653 −0.753263 0.657719i \(-0.771521\pi\)
−0.753263 + 0.657719i \(0.771521\pi\)
\(458\) −7952.35 −0.811329
\(459\) 0 0
\(460\) −11478.2 −1.16342
\(461\) −15330.5 −1.54884 −0.774419 0.632672i \(-0.781958\pi\)
−0.774419 + 0.632672i \(0.781958\pi\)
\(462\) −3137.64 −0.315966
\(463\) 11158.0 1.11999 0.559993 0.828497i \(-0.310804\pi\)
0.559993 + 0.828497i \(0.310804\pi\)
\(464\) 12.9321 0.00129388
\(465\) 2166.25 0.216037
\(466\) −1409.61 −0.140126
\(467\) −14748.4 −1.46140 −0.730700 0.682699i \(-0.760806\pi\)
−0.730700 + 0.682699i \(0.760806\pi\)
\(468\) 543.737 0.0537057
\(469\) 4705.19 0.463253
\(470\) 5657.07 0.555194
\(471\) 16961.2 1.65931
\(472\) 13353.5 1.30222
\(473\) −1835.06 −0.178385
\(474\) −8452.48 −0.819062
\(475\) 9492.45 0.916934
\(476\) 0 0
\(477\) 1372.65 0.131760
\(478\) 256.219 0.0245171
\(479\) −14914.1 −1.42264 −0.711320 0.702868i \(-0.751902\pi\)
−0.711320 + 0.702868i \(0.751902\pi\)
\(480\) −13461.4 −1.28006
\(481\) −18238.1 −1.72887
\(482\) 5484.86 0.518317
\(483\) 21182.3 1.99550
\(484\) 6310.77 0.592672
\(485\) 9998.04 0.936057
\(486\) 956.813 0.0893043
\(487\) −3034.34 −0.282339 −0.141169 0.989985i \(-0.545086\pi\)
−0.141169 + 0.989985i \(0.545086\pi\)
\(488\) 3562.96 0.330507
\(489\) −1884.18 −0.174245
\(490\) 11928.6 1.09975
\(491\) 10032.0 0.922073 0.461036 0.887381i \(-0.347478\pi\)
0.461036 + 0.887381i \(0.347478\pi\)
\(492\) −5057.94 −0.463475
\(493\) 0 0
\(494\) −8208.43 −0.747601
\(495\) −422.490 −0.0383626
\(496\) 307.112 0.0278019
\(497\) −572.207 −0.0516438
\(498\) 372.066 0.0334793
\(499\) −13921.2 −1.24890 −0.624449 0.781066i \(-0.714676\pi\)
−0.624449 + 0.781066i \(0.714676\pi\)
\(500\) −3278.89 −0.293273
\(501\) 2852.86 0.254404
\(502\) 6847.23 0.608779
\(503\) 10270.2 0.910387 0.455194 0.890392i \(-0.349570\pi\)
0.455194 + 0.890392i \(0.349570\pi\)
\(504\) −1357.03 −0.119934
\(505\) 7970.00 0.702298
\(506\) −3093.44 −0.271779
\(507\) 510.908 0.0447539
\(508\) 8586.90 0.749965
\(509\) 18020.5 1.56924 0.784621 0.619975i \(-0.212857\pi\)
0.784621 + 0.619975i \(0.212857\pi\)
\(510\) 0 0
\(511\) −9883.03 −0.855576
\(512\) −3652.06 −0.315234
\(513\) 16478.9 1.41825
\(514\) 7225.00 0.620002
\(515\) 2542.55 0.217550
\(516\) 3715.61 0.316998
\(517\) −3349.82 −0.284962
\(518\) 18539.8 1.57257
\(519\) 16554.6 1.40013
\(520\) −14117.1 −1.19053
\(521\) 18326.3 1.54106 0.770529 0.637405i \(-0.219992\pi\)
0.770529 + 0.637405i \(0.219992\pi\)
\(522\) 4.33071 0.000363122 0
\(523\) −15369.6 −1.28502 −0.642512 0.766276i \(-0.722108\pi\)
−0.642512 + 0.766276i \(0.722108\pi\)
\(524\) 7244.42 0.603958
\(525\) −12271.2 −1.02011
\(526\) −7452.09 −0.617731
\(527\) 0 0
\(528\) 688.455 0.0567447
\(529\) 8716.90 0.716438
\(530\) −14515.8 −1.18967
\(531\) −1351.56 −0.110457
\(532\) −18333.6 −1.49410
\(533\) −8448.08 −0.686542
\(534\) −4937.65 −0.400137
\(535\) 2145.70 0.173395
\(536\) 3415.87 0.275267
\(537\) 10435.0 0.838556
\(538\) −5788.09 −0.463833
\(539\) −7063.50 −0.564464
\(540\) 11543.5 0.919913
\(541\) −18606.9 −1.47870 −0.739348 0.673323i \(-0.764866\pi\)
−0.739348 + 0.673323i \(0.764866\pi\)
\(542\) 12184.0 0.965586
\(543\) −3399.16 −0.268641
\(544\) 0 0
\(545\) −10157.9 −0.798382
\(546\) 10611.3 0.831725
\(547\) 3946.20 0.308459 0.154230 0.988035i \(-0.450710\pi\)
0.154230 + 0.988035i \(0.450710\pi\)
\(548\) −2667.60 −0.207946
\(549\) −360.619 −0.0280343
\(550\) 1792.07 0.138935
\(551\) 143.646 0.0111062
\(552\) 15377.9 1.18574
\(553\) −31532.3 −2.42476
\(554\) −5145.11 −0.394576
\(555\) −28693.8 −2.19457
\(556\) −5589.39 −0.426336
\(557\) 14883.1 1.13217 0.566084 0.824347i \(-0.308458\pi\)
0.566084 + 0.824347i \(0.308458\pi\)
\(558\) 102.846 0.00780253
\(559\) 6206.05 0.469567
\(560\) −4337.27 −0.327291
\(561\) 0 0
\(562\) 10818.7 0.812027
\(563\) 25751.7 1.92771 0.963857 0.266420i \(-0.0858408\pi\)
0.963857 + 0.266420i \(0.0858408\pi\)
\(564\) 6782.71 0.506389
\(565\) −28707.0 −2.13755
\(566\) 4953.22 0.367843
\(567\) −19586.8 −1.45074
\(568\) −415.410 −0.0306870
\(569\) −2194.88 −0.161712 −0.0808561 0.996726i \(-0.525765\pi\)
−0.0808561 + 0.996726i \(0.525765\pi\)
\(570\) −12914.2 −0.948977
\(571\) 5227.87 0.383151 0.191576 0.981478i \(-0.438640\pi\)
0.191576 + 0.981478i \(0.438640\pi\)
\(572\) 3404.86 0.248889
\(573\) −9574.77 −0.698066
\(574\) 8587.81 0.624474
\(575\) −12098.3 −0.877453
\(576\) −462.623 −0.0334652
\(577\) −6527.86 −0.470985 −0.235492 0.971876i \(-0.575670\pi\)
−0.235492 + 0.971876i \(0.575670\pi\)
\(578\) 0 0
\(579\) 347.323 0.0249296
\(580\) 100.624 0.00720376
\(581\) 1388.01 0.0991122
\(582\) −5455.87 −0.388579
\(583\) 8595.50 0.610617
\(584\) −7174.87 −0.508387
\(585\) 1428.83 0.100983
\(586\) −8535.65 −0.601714
\(587\) −6648.24 −0.467465 −0.233733 0.972301i \(-0.575094\pi\)
−0.233733 + 0.972301i \(0.575094\pi\)
\(588\) 14302.1 1.00308
\(589\) 3411.30 0.238642
\(590\) 14292.7 0.997324
\(591\) 15166.4 1.05561
\(592\) −4067.96 −0.282419
\(593\) −1450.60 −0.100453 −0.0502267 0.998738i \(-0.515994\pi\)
−0.0502267 + 0.998738i \(0.515994\pi\)
\(594\) 3111.04 0.214895
\(595\) 0 0
\(596\) 7273.09 0.499861
\(597\) 6258.35 0.429040
\(598\) 10461.8 0.715411
\(599\) −10070.9 −0.686957 −0.343479 0.939161i \(-0.611605\pi\)
−0.343479 + 0.939161i \(0.611605\pi\)
\(600\) −8908.64 −0.606156
\(601\) −9209.45 −0.625060 −0.312530 0.949908i \(-0.601177\pi\)
−0.312530 + 0.949908i \(0.601177\pi\)
\(602\) −6308.69 −0.427115
\(603\) −345.732 −0.0233487
\(604\) 8066.99 0.543445
\(605\) 16583.5 1.11440
\(606\) −4349.18 −0.291540
\(607\) 5813.89 0.388762 0.194381 0.980926i \(-0.437730\pi\)
0.194381 + 0.980926i \(0.437730\pi\)
\(608\) −21198.4 −1.41399
\(609\) −185.695 −0.0123559
\(610\) 3813.54 0.253124
\(611\) 11328.9 0.750111
\(612\) 0 0
\(613\) −23778.5 −1.56673 −0.783365 0.621562i \(-0.786498\pi\)
−0.783365 + 0.621562i \(0.786498\pi\)
\(614\) −3411.42 −0.224224
\(615\) −13291.3 −0.871472
\(616\) −8497.65 −0.555812
\(617\) 19716.9 1.28650 0.643251 0.765655i \(-0.277585\pi\)
0.643251 + 0.765655i \(0.277585\pi\)
\(618\) −1387.45 −0.0903099
\(619\) 6184.28 0.401562 0.200781 0.979636i \(-0.435652\pi\)
0.200781 + 0.979636i \(0.435652\pi\)
\(620\) 2389.62 0.154790
\(621\) −21002.7 −1.35718
\(622\) 4317.50 0.278322
\(623\) −18420.1 −1.18457
\(624\) −2328.31 −0.149370
\(625\) −19081.0 −1.22119
\(626\) −7932.56 −0.506468
\(627\) 7647.13 0.487077
\(628\) 18710.2 1.18888
\(629\) 0 0
\(630\) −1452.47 −0.0918534
\(631\) 14216.8 0.896926 0.448463 0.893801i \(-0.351972\pi\)
0.448463 + 0.893801i \(0.351972\pi\)
\(632\) −22891.8 −1.44080
\(633\) 5283.64 0.331763
\(634\) −1842.09 −0.115393
\(635\) 22564.7 1.41016
\(636\) −17404.1 −1.08509
\(637\) 23888.3 1.48585
\(638\) 27.1187 0.00168282
\(639\) 42.0450 0.00260294
\(640\) −16715.7 −1.03242
\(641\) 14249.8 0.878058 0.439029 0.898473i \(-0.355323\pi\)
0.439029 + 0.898473i \(0.355323\pi\)
\(642\) −1170.89 −0.0719805
\(643\) 1767.83 0.108424 0.0542118 0.998529i \(-0.482735\pi\)
0.0542118 + 0.998529i \(0.482735\pi\)
\(644\) 23366.5 1.42977
\(645\) 9763.89 0.596051
\(646\) 0 0
\(647\) −14274.5 −0.867369 −0.433685 0.901065i \(-0.642787\pi\)
−0.433685 + 0.901065i \(0.642787\pi\)
\(648\) −14219.6 −0.862035
\(649\) −8463.40 −0.511891
\(650\) −6060.68 −0.365722
\(651\) −4409.90 −0.265496
\(652\) −2078.47 −0.124845
\(653\) 14516.1 0.869924 0.434962 0.900449i \(-0.356762\pi\)
0.434962 + 0.900449i \(0.356762\pi\)
\(654\) 5543.13 0.331427
\(655\) 19036.9 1.13562
\(656\) −1884.32 −0.112150
\(657\) 726.193 0.0431225
\(658\) −11516.3 −0.682296
\(659\) 23248.8 1.37427 0.687135 0.726530i \(-0.258868\pi\)
0.687135 + 0.726530i \(0.258868\pi\)
\(660\) 5356.83 0.315931
\(661\) −28695.7 −1.68855 −0.844277 0.535907i \(-0.819970\pi\)
−0.844277 + 0.535907i \(0.819970\pi\)
\(662\) −3391.51 −0.199116
\(663\) 0 0
\(664\) 1007.66 0.0588930
\(665\) −48177.0 −2.80936
\(666\) −1362.28 −0.0792602
\(667\) −183.079 −0.0106280
\(668\) 3147.03 0.182279
\(669\) 6971.71 0.402903
\(670\) 3656.11 0.210818
\(671\) −2258.18 −0.129920
\(672\) 27403.8 1.57310
\(673\) −6852.55 −0.392491 −0.196246 0.980555i \(-0.562875\pi\)
−0.196246 + 0.980555i \(0.562875\pi\)
\(674\) −3092.63 −0.176742
\(675\) 12167.2 0.693799
\(676\) 563.590 0.0320659
\(677\) −2123.19 −0.120533 −0.0602665 0.998182i \(-0.519195\pi\)
−0.0602665 + 0.998182i \(0.519195\pi\)
\(678\) 15665.2 0.887345
\(679\) −20353.3 −1.15035
\(680\) 0 0
\(681\) 12144.0 0.683345
\(682\) 644.017 0.0361594
\(683\) −4035.12 −0.226061 −0.113030 0.993592i \(-0.536056\pi\)
−0.113030 + 0.993592i \(0.536056\pi\)
\(684\) 1347.13 0.0753052
\(685\) −7009.92 −0.391001
\(686\) −8326.18 −0.463404
\(687\) −25055.3 −1.39144
\(688\) 1384.24 0.0767060
\(689\) −29069.5 −1.60734
\(690\) 16459.4 0.908116
\(691\) 20015.0 1.10189 0.550947 0.834540i \(-0.314267\pi\)
0.550947 + 0.834540i \(0.314267\pi\)
\(692\) 18261.7 1.00319
\(693\) 860.076 0.0471451
\(694\) −17252.6 −0.943661
\(695\) −14687.8 −0.801641
\(696\) −134.811 −0.00734195
\(697\) 0 0
\(698\) −14624.5 −0.793047
\(699\) −4441.23 −0.240319
\(700\) −13536.6 −0.730905
\(701\) 19025.4 1.02508 0.512539 0.858664i \(-0.328705\pi\)
0.512539 + 0.858664i \(0.328705\pi\)
\(702\) −10521.3 −0.565673
\(703\) −45185.6 −2.42419
\(704\) −2896.93 −0.155088
\(705\) 17823.6 0.952164
\(706\) 6368.69 0.339502
\(707\) −16224.8 −0.863077
\(708\) 17136.6 0.909653
\(709\) −11992.4 −0.635237 −0.317619 0.948219i \(-0.602883\pi\)
−0.317619 + 0.948219i \(0.602883\pi\)
\(710\) −444.626 −0.0235021
\(711\) 2316.96 0.122212
\(712\) −13372.6 −0.703876
\(713\) −4347.78 −0.228367
\(714\) 0 0
\(715\) 8947.31 0.467987
\(716\) 11511.0 0.600821
\(717\) 807.265 0.0420472
\(718\) 16423.1 0.853629
\(719\) −12005.7 −0.622721 −0.311361 0.950292i \(-0.600785\pi\)
−0.311361 + 0.950292i \(0.600785\pi\)
\(720\) 318.697 0.0164960
\(721\) −5175.95 −0.267354
\(722\) −9486.83 −0.489007
\(723\) 17281.0 0.888919
\(724\) −3749.66 −0.192479
\(725\) 106.060 0.00543309
\(726\) −9049.49 −0.462614
\(727\) −22403.9 −1.14294 −0.571468 0.820624i \(-0.693626\pi\)
−0.571468 + 0.820624i \(0.693626\pi\)
\(728\) 28738.5 1.46308
\(729\) 20996.1 1.06671
\(730\) −7679.48 −0.389357
\(731\) 0 0
\(732\) 4572.36 0.230873
\(733\) −17400.5 −0.876810 −0.438405 0.898777i \(-0.644457\pi\)
−0.438405 + 0.898777i \(0.644457\pi\)
\(734\) 19233.9 0.967218
\(735\) 37583.2 1.88609
\(736\) 27017.8 1.35311
\(737\) −2164.96 −0.108205
\(738\) −631.022 −0.0314746
\(739\) −7691.26 −0.382852 −0.191426 0.981507i \(-0.561311\pi\)
−0.191426 + 0.981507i \(0.561311\pi\)
\(740\) −31652.6 −1.57239
\(741\) −25862.1 −1.28214
\(742\) 29550.3 1.46203
\(743\) −33377.5 −1.64805 −0.824027 0.566551i \(-0.808277\pi\)
−0.824027 + 0.566551i \(0.808277\pi\)
\(744\) −3201.50 −0.157759
\(745\) 19112.2 0.939890
\(746\) −18182.5 −0.892371
\(747\) −101.989 −0.00499543
\(748\) 0 0
\(749\) −4368.06 −0.213092
\(750\) 4701.84 0.228916
\(751\) −30285.6 −1.47155 −0.735777 0.677224i \(-0.763183\pi\)
−0.735777 + 0.677224i \(0.763183\pi\)
\(752\) 2526.88 0.122534
\(753\) 21573.4 1.04406
\(754\) −91.7139 −0.00442974
\(755\) 21198.4 1.02184
\(756\) −23499.5 −1.13051
\(757\) −13809.3 −0.663023 −0.331511 0.943451i \(-0.607559\pi\)
−0.331511 + 0.943451i \(0.607559\pi\)
\(758\) −1717.81 −0.0823135
\(759\) −9746.44 −0.466104
\(760\) −34975.5 −1.66933
\(761\) 33269.2 1.58477 0.792383 0.610023i \(-0.208840\pi\)
0.792383 + 0.610023i \(0.208840\pi\)
\(762\) −12313.4 −0.585390
\(763\) 20678.8 0.981159
\(764\) −10562.1 −0.500160
\(765\) 0 0
\(766\) 13044.1 0.615276
\(767\) 28622.7 1.34746
\(768\) 17657.0 0.829613
\(769\) −22932.1 −1.07536 −0.537681 0.843148i \(-0.680700\pi\)
−0.537681 + 0.843148i \(0.680700\pi\)
\(770\) −9095.29 −0.425677
\(771\) 22763.7 1.06331
\(772\) 383.137 0.0178619
\(773\) 3142.46 0.146218 0.0731090 0.997324i \(-0.476708\pi\)
0.0731090 + 0.997324i \(0.476708\pi\)
\(774\) 463.555 0.0215273
\(775\) 2518.73 0.116742
\(776\) −14776.1 −0.683545
\(777\) 58412.9 2.69698
\(778\) 6012.85 0.277084
\(779\) −20930.4 −0.962657
\(780\) −18116.5 −0.831633
\(781\) 263.285 0.0120628
\(782\) 0 0
\(783\) 184.121 0.00840351
\(784\) 5328.22 0.242721
\(785\) 49166.7 2.23546
\(786\) −10388.3 −0.471424
\(787\) 11712.3 0.530492 0.265246 0.964181i \(-0.414547\pi\)
0.265246 + 0.964181i \(0.414547\pi\)
\(788\) 16730.3 0.756337
\(789\) −23479.1 −1.05942
\(790\) −24501.8 −1.10346
\(791\) 58439.8 2.62690
\(792\) 624.397 0.0280139
\(793\) 7637.04 0.341991
\(794\) −13244.6 −0.591981
\(795\) −45734.6 −2.04030
\(796\) 6903.68 0.307405
\(797\) −12691.2 −0.564045 −0.282022 0.959408i \(-0.591005\pi\)
−0.282022 + 0.959408i \(0.591005\pi\)
\(798\) 26289.9 1.16623
\(799\) 0 0
\(800\) −15651.8 −0.691717
\(801\) 1353.49 0.0597042
\(802\) −3438.33 −0.151386
\(803\) 4547.39 0.199843
\(804\) 4383.60 0.192286
\(805\) 61402.6 2.68839
\(806\) −2178.03 −0.0951832
\(807\) −18236.4 −0.795480
\(808\) −11778.9 −0.512845
\(809\) −22034.9 −0.957610 −0.478805 0.877921i \(-0.658930\pi\)
−0.478805 + 0.877921i \(0.658930\pi\)
\(810\) −15219.7 −0.660203
\(811\) −2987.60 −0.129357 −0.0646787 0.997906i \(-0.520602\pi\)
−0.0646787 + 0.997906i \(0.520602\pi\)
\(812\) −204.843 −0.00885295
\(813\) 38387.9 1.65599
\(814\) −8530.55 −0.367316
\(815\) −5461.81 −0.234747
\(816\) 0 0
\(817\) 15375.7 0.658418
\(818\) −7178.59 −0.306838
\(819\) −2908.72 −0.124101
\(820\) −14661.8 −0.624405
\(821\) −39918.9 −1.69693 −0.848465 0.529251i \(-0.822473\pi\)
−0.848465 + 0.529251i \(0.822473\pi\)
\(822\) 3825.27 0.162313
\(823\) 15017.3 0.636050 0.318025 0.948082i \(-0.396980\pi\)
0.318025 + 0.948082i \(0.396980\pi\)
\(824\) −3757.63 −0.158863
\(825\) 5646.25 0.238275
\(826\) −29096.1 −1.22564
\(827\) 3898.57 0.163926 0.0819628 0.996635i \(-0.473881\pi\)
0.0819628 + 0.996635i \(0.473881\pi\)
\(828\) −1716.94 −0.0720627
\(829\) −4410.66 −0.184787 −0.0923937 0.995723i \(-0.529452\pi\)
−0.0923937 + 0.995723i \(0.529452\pi\)
\(830\) 1078.53 0.0451041
\(831\) −16210.6 −0.676702
\(832\) 9797.23 0.408243
\(833\) 0 0
\(834\) 8015.05 0.332780
\(835\) 8269.77 0.342739
\(836\) 8435.67 0.348988
\(837\) 4372.52 0.180569
\(838\) 6706.47 0.276457
\(839\) 29154.8 1.19969 0.599843 0.800118i \(-0.295230\pi\)
0.599843 + 0.800118i \(0.295230\pi\)
\(840\) 45214.0 1.85718
\(841\) −24387.4 −0.999934
\(842\) −22148.3 −0.906510
\(843\) 34086.2 1.39264
\(844\) 5828.46 0.237706
\(845\) 1481.00 0.0602936
\(846\) 846.202 0.0343889
\(847\) −33759.5 −1.36953
\(848\) −6483.86 −0.262567
\(849\) 15606.0 0.630856
\(850\) 0 0
\(851\) 57590.0 2.31981
\(852\) −533.097 −0.0214362
\(853\) 24310.2 0.975808 0.487904 0.872897i \(-0.337762\pi\)
0.487904 + 0.872897i \(0.337762\pi\)
\(854\) −7763.35 −0.311073
\(855\) 3539.99 0.141596
\(856\) −3171.12 −0.126620
\(857\) 13081.1 0.521403 0.260701 0.965419i \(-0.416046\pi\)
0.260701 + 0.965419i \(0.416046\pi\)
\(858\) −4882.49 −0.194272
\(859\) 1740.97 0.0691514 0.0345757 0.999402i \(-0.488992\pi\)
0.0345757 + 0.999402i \(0.488992\pi\)
\(860\) 10770.7 0.427067
\(861\) 27057.4 1.07098
\(862\) 10126.8 0.400141
\(863\) −15561.9 −0.613826 −0.306913 0.951738i \(-0.599296\pi\)
−0.306913 + 0.951738i \(0.599296\pi\)
\(864\) −27171.5 −1.06990
\(865\) 47988.0 1.88629
\(866\) −21.0172 −0.000824703 0
\(867\) 0 0
\(868\) −4864.63 −0.190226
\(869\) 14508.7 0.566368
\(870\) −144.292 −0.00562295
\(871\) 7321.76 0.284832
\(872\) 15012.4 0.583010
\(873\) 1495.54 0.0579797
\(874\) 25919.5 1.00314
\(875\) 17540.4 0.677685
\(876\) −9207.54 −0.355130
\(877\) 32043.6 1.23379 0.616895 0.787045i \(-0.288390\pi\)
0.616895 + 0.787045i \(0.288390\pi\)
\(878\) −22612.0 −0.869156
\(879\) −26893.1 −1.03195
\(880\) 1995.67 0.0764478
\(881\) 38673.0 1.47892 0.739458 0.673202i \(-0.235082\pi\)
0.739458 + 0.673202i \(0.235082\pi\)
\(882\) 1784.31 0.0681191
\(883\) −45977.4 −1.75228 −0.876140 0.482056i \(-0.839890\pi\)
−0.876140 + 0.482056i \(0.839890\pi\)
\(884\) 0 0
\(885\) 45031.7 1.71042
\(886\) −26148.3 −0.991499
\(887\) 5325.60 0.201596 0.100798 0.994907i \(-0.467860\pi\)
0.100798 + 0.994907i \(0.467860\pi\)
\(888\) 42406.5 1.60256
\(889\) −45935.6 −1.73299
\(890\) −14313.1 −0.539074
\(891\) 9012.30 0.338859
\(892\) 7690.60 0.288677
\(893\) 28067.7 1.05179
\(894\) −10429.4 −0.390170
\(895\) 30248.7 1.12972
\(896\) 34028.8 1.26877
\(897\) 32961.8 1.22694
\(898\) 26214.1 0.974139
\(899\) 38.1150 0.00141402
\(900\) 994.649 0.0368389
\(901\) 0 0
\(902\) −3951.44 −0.145863
\(903\) −19876.7 −0.732507
\(904\) 42426.1 1.56092
\(905\) −9853.37 −0.361919
\(906\) −11567.9 −0.424190
\(907\) 12188.4 0.446207 0.223104 0.974795i \(-0.428381\pi\)
0.223104 + 0.974795i \(0.428381\pi\)
\(908\) 13396.2 0.489613
\(909\) 1192.18 0.0435006
\(910\) 30759.7 1.12052
\(911\) −24738.8 −0.899707 −0.449854 0.893102i \(-0.648524\pi\)
−0.449854 + 0.893102i \(0.648524\pi\)
\(912\) −5768.48 −0.209444
\(913\) −638.652 −0.0231504
\(914\) 23281.6 0.842547
\(915\) 12015.3 0.434111
\(916\) −27638.9 −0.996959
\(917\) −38754.0 −1.39561
\(918\) 0 0
\(919\) 1584.70 0.0568820 0.0284410 0.999595i \(-0.490946\pi\)
0.0284410 + 0.999595i \(0.490946\pi\)
\(920\) 44577.0 1.59746
\(921\) −10748.3 −0.384548
\(922\) 24250.5 0.866211
\(923\) −890.412 −0.0317533
\(924\) −10905.1 −0.388258
\(925\) −33362.7 −1.18590
\(926\) −17650.1 −0.626369
\(927\) 380.322 0.0134751
\(928\) −236.852 −0.00837829
\(929\) 7266.92 0.256642 0.128321 0.991733i \(-0.459041\pi\)
0.128321 + 0.991733i \(0.459041\pi\)
\(930\) −3426.66 −0.120822
\(931\) 59184.1 2.08344
\(932\) −4899.19 −0.172187
\(933\) 13603.1 0.477325
\(934\) 23329.6 0.817310
\(935\) 0 0
\(936\) −2111.67 −0.0737416
\(937\) −3617.62 −0.126129 −0.0630643 0.998009i \(-0.520087\pi\)
−0.0630643 + 0.998009i \(0.520087\pi\)
\(938\) −7442.86 −0.259081
\(939\) −24992.9 −0.868598
\(940\) 19661.5 0.682220
\(941\) −35841.7 −1.24166 −0.620832 0.783944i \(-0.713205\pi\)
−0.620832 + 0.783944i \(0.713205\pi\)
\(942\) −26830.0 −0.927991
\(943\) 26676.3 0.921208
\(944\) 6384.21 0.220115
\(945\) −61751.9 −2.12570
\(946\) 2902.77 0.0997643
\(947\) −33544.8 −1.15107 −0.575534 0.817778i \(-0.695206\pi\)
−0.575534 + 0.817778i \(0.695206\pi\)
\(948\) −29377.1 −1.00646
\(949\) −15379.0 −0.526052
\(950\) −15015.5 −0.512809
\(951\) −5803.85 −0.197900
\(952\) 0 0
\(953\) −51190.9 −1.74002 −0.870008 0.493038i \(-0.835886\pi\)
−0.870008 + 0.493038i \(0.835886\pi\)
\(954\) −2171.32 −0.0736886
\(955\) −27755.0 −0.940452
\(956\) 890.506 0.0301266
\(957\) 85.4425 0.00288606
\(958\) 23591.8 0.795633
\(959\) 14270.3 0.480514
\(960\) 15413.9 0.518209
\(961\) −28885.8 −0.969616
\(962\) 28849.8 0.966896
\(963\) 320.960 0.0107402
\(964\) 19063.0 0.636906
\(965\) 1006.81 0.0335858
\(966\) −33507.0 −1.11602
\(967\) 11754.1 0.390885 0.195442 0.980715i \(-0.437386\pi\)
0.195442 + 0.980715i \(0.437386\pi\)
\(968\) −24508.7 −0.813779
\(969\) 0 0
\(970\) −15815.3 −0.523503
\(971\) −16608.7 −0.548919 −0.274459 0.961599i \(-0.588499\pi\)
−0.274459 + 0.961599i \(0.588499\pi\)
\(972\) 3325.46 0.109737
\(973\) 29900.4 0.985164
\(974\) 4799.84 0.157902
\(975\) −19095.3 −0.627218
\(976\) 1703.42 0.0558659
\(977\) −47963.6 −1.57062 −0.785308 0.619105i \(-0.787496\pi\)
−0.785308 + 0.619105i \(0.787496\pi\)
\(978\) 2980.48 0.0974490
\(979\) 8475.48 0.276688
\(980\) 41458.5 1.35137
\(981\) −1519.46 −0.0494521
\(982\) −15869.0 −0.515683
\(983\) 49858.2 1.61773 0.808866 0.587993i \(-0.200082\pi\)
0.808866 + 0.587993i \(0.200082\pi\)
\(984\) 19643.1 0.636382
\(985\) 43964.0 1.42214
\(986\) 0 0
\(987\) −36284.1 −1.17015
\(988\) −28528.9 −0.918649
\(989\) −19596.7 −0.630068
\(990\) 668.311 0.0214549
\(991\) 50467.6 1.61772 0.808858 0.588005i \(-0.200086\pi\)
0.808858 + 0.588005i \(0.200086\pi\)
\(992\) −5624.78 −0.180027
\(993\) −10685.6 −0.341487
\(994\) 905.139 0.0288826
\(995\) 18141.5 0.578014
\(996\) 1293.14 0.0411392
\(997\) −40927.6 −1.30009 −0.650046 0.759895i \(-0.725250\pi\)
−0.650046 + 0.759895i \(0.725250\pi\)
\(998\) 22021.2 0.698465
\(999\) −57917.6 −1.83427
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.4.a.d.1.2 yes 4
17.4 even 4 289.4.b.d.288.6 8
17.13 even 4 289.4.b.d.288.5 8
17.16 even 2 289.4.a.c.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
289.4.a.c.1.2 4 17.16 even 2
289.4.a.d.1.2 yes 4 1.1 even 1 trivial
289.4.b.d.288.5 8 17.13 even 4
289.4.b.d.288.6 8 17.4 even 4